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PREFACE

Ever since the publication of our Elementary Mathematical

Analysis (The Macmillan Co., 1917) we have been asked by

numerous teachers to publish separately, as a textbook in plane

trigonometry, the material on trigonometry and logarithms of

the text mentioned.

The present textbook is the direct outcome of these requests.

Of course, such separate publication of material taken out of

the body of another book necessitated some changes and an in-

troductory chapter. As a matter of fact, however, we have

found it desirable to make a number of changes and additions

not required by the necessities of separate publication. As a

result fully half of the material has been entirely rewritten, with

the purpose of bringing the text abreast of the most recent

tendencies in the teaching of trigonometry.

There is an increasing demand for a brief text emphasizing the

numerical aspect of trigonometry and giving only so much of the

theory as is necessary for a thorough understanding of the

numerical applications. The material has therefore been ar-

ranged in such a way that the first six chapters give the essen-

tials of a course in numerical trigonometry and logarithmic

computation. The remainder of the theory usually given in

the longer courses is contained in the last two chapters.

More emphasis than hitherto has been placed on the use of

tables. For this purpose a table of squares and square roots

has been added. Recent experience has emphasized the appli-

cations of trigonometry in navigation. We have accordingly

added some material in the text on navigation, have introduced

v
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vi PREFACE

the haversine, and have added a four-place table of haversines

for the benefit of those teachers who feel that the use of the

haversine in the solution of triangles is desirable. This material

can, however, be readily omitted by any teacher who prefers

to do so.

J. W. Young,

F. M. Morgan.
Hanover, N.H.,

August, 1919.
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PLANE TRIGONOMETRY AND
NUMERICAL COMPUTATION

CHAPTER I

INTRODUCTORY CONCEPTIONS

1. The Uses of Trigonometry. The word " trigonometry "

is derived from two Greek words meaning " the measurement

of triangles." A triangle has six so-called elements (or parts) •

viz., its three sides and its three angles.' AV'ev*rksw from our

study of geometry that, in general, if three elements of a tri-

angle (not all angles) are given, the triangle is completely

determined.* Hence, if three such determining elements of a

triangle are given, it should be possible to compute the remain-

ing elements. The methods by which this can be done, i.e.

methods for " solving a triangle," constitute one of the prin-

cipal objects of the study of- trigonometry.

If two of the angles of a triangle are given, the third angle

can be found from the relation A + B -f- C = 180° (A, B, and

C representing the angles of the triangle) ; also, in a right tri-

angle, if two of the sides are known, the third side can be

found from the relation a2 + b2 = c- (a, b being the legs and c

the hypotenuse). But this is nearly the limit to which the

methods of elementary geometry will allow us to go in the

solution of a triangle.

Trigonometry f is the foundation of the art of surveying

* What exceptions are there to this statement ?

t Throughout this book we shall confine ourselves to the subject of "plane

trigonometry," which deals with rectilinear triangles in a plane. " Spherical

trigonometry" deals with similar problems regarding triangles on a sphere

whose sides are arcs of great circles.

B 1



PLANE TRIGONOMETRY H,

and of much of the art of navigation. It is, moreover, of

primary importance in practically every branch of pure and

applied mathematics. Many of the more elementary applica-

tions will be presented in later portions of this text.

2. The " Shadow Method." The ancient Greeks employed

the theory of similar triangles in the solution of a special type

of triangle problem which it is worth our while to examine

briefly, because it contains the germ of the theory of trigo-

nometry.

It is desired to find the height CA of a vertical tower stand-

ing on a level plain. It is observed

that at a certain time the tower casts a

shadow 42 ft. long. At the same time

a pole C'A', 10 ft. long, held vertically

with one end on the ground casts a

shadow 7 ft. long. From these data

the height of the tower is readily com-

puted as follows : The right triangles

ABC and A'B'C are similar since Z B
= Z B'. (Why ?) Therefore we have

CA = C'A' 10

BC

A

A:
B' 7 C'

or CA =

B'C

C'A'

B'C

The tower is then 60 ft. high.

3. A " Function " of an Angle.

£<7 =y x42 = 60.

From the point of view of

our future study the important thing to notice in the solution

CA C'A'
of the preceding article is the fact that the ratios ,

—

—

v Bkj b g

are equal, i.e. that the ratio of the side opposite the angle B to

the side adjacent to the angle is determined by the size of the angle,

and does not depend at all on any of the other elements of the

triangle, provided only it is a right triangle.
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Definition. Whenever a quantity depends for its value on

a second quantity, the first is called a function of the second.

Thus in our example the ratio of the side opposite an angle

of a right triangle to the side adjacent is a quantity which

depends for its value only on the angle ; it is, therefore, called

a function of the angle. This ratio is merely one of several

functions of an angle which we shall define in the next

chapter. By means of these functions the fundamental prob-

lem of trigonometry can be readily solved.

The particular function which we have discussed is called

the tangent of the angle. Explicitly defined for an acute angle

of a right triangle, we have

tangent of angle = ^ide opposite the angle_.

side adjacent to the angle

If the angle B in the preceding example were measured it

would be found to contain 55°. In any right triangle then

containing an angle of 55° we should find this ratio to be equal

to -

T-, or 1.43. If the angle is changed, this ratio is changed,

but it is fixed for any given angle. If the angle is 45°, the

tangent is equal to 1, since in that case the triangle is

isosceles.

The word tangent is abbreviated " tan." Thus we have

already found tan 55° = 1.43 and tan 45° = 1.00. Similarly

to every other acute angle corresponds a definite number,

which is the tangent of that angle. The values of the tan-

gents of angles have been tabulated. ^Ve shall have occasion

to use such tables extensively in the future. \

If a, 6, c are the sides of a right triangle ABC with right

angle at C and with the usual notation whereby the side a is

opposite the angle A and side b opposite the angle B, the defi-

nition of the tangent gives

tanjB = -.
a
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From this we get at once,

b = a tan B and a =
tan B

These are our first trigonometric formulas. By means of

them and a table of tangents we can compute either leg of a

right triangle, if the other leg and an acute angle are given.

EXERCISES

1. What is meant by "the elements of a triangle " ? by " solving a

triangle '
' ?

2. A tree casts a shadow 20 ft. long, when a vertical yardstick with

one end on the ground casts a shadow of 2 ft. How high is the tree ?

3. A chimney is known to be 90 ft. high. How long is its shadow

when a 9-foot pole held vertically with one end on the ground casts a

shadow 5 ft. long ?

4. Give examples from your own experience of quantities which are

functions of other quantities.

5. Define the tangent of an acute angle of a right triangle. Why does

its value depend only on the size of the angle ?

6. In the adjacent figure think of the line BA as rotating about the

point B in the direction of the arrow, starting from

the position BC (when the angle B is 0) and assum-

ing successively the positions BAh BA%, BA3 ,

Show that the tangent of the angle B is very

small when B is very small, that tan B increases as

the angle increases, that tan B is less than 1 as

long as B is less than 45°, that tan 45° = 1, that

tan B is greater than 1 if the angle is greater than

45°, and that tan B increases without limit as B ap-

proaches 90°.

7. The following table gives the values of the tan-

gent for certain values of the angle i

angle
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//
(9) 60°

20°

By means of this table find the other leg of a right triangle ABC from

the elements given

:

^ (a) B = 50°, a = 10 (d) B = 20°, b = 13

(6) B = 70°, a = 16 (e) A = 30°, 6=5
(c) B = 40°, & = 24 (/) A = 10°, & = 62

8. From the data and the results of the preceding exercise find the

other acute angle and the hypotenuse of each of the right triangles.

^4. Coordinates in a Plane. The student should already be

familiar from his study of algebra with the method of locating

points in a plane by means of coordinates. Since we shall

often have occasion to use such a method in the future, we will

recall it briefly at this point.

The method consists in referring the points in question to

two straight lines X'X and Y l Y, at right angles to each other,

which are called the axes of

Coordinates. X'X is USUally Second Quadrant

drawn horizontally and is

called the x-axis ; Y' Y, which

is then vertical, is called the

y-axis.

The position of any point

P is completely determined

if its distance (measured in

terms of some convenient

unit) and its direction from each of the axes is known. Thus

the position of Px (Fig. 2) is known, if we know that it is 4

units to the right of the ?/-axis and 2 units above the x-axis. If

we agree to consider distance measured to the right or upwards

as positive, and therefore distance measured to the left or down-

ward as negative ; and if, furthermore, we represent distances

and directions measured parallel to the x-axis by x, and distances

and directions measured parallel to the y-axis by y, then the

position of Px
may be completely given by the specifications

» = -r-4, 2/=-|-2; or more briefly still by the symbol (4, 2).

M,

X' Ms O

Third Quadrant

Mt

Mt

rl Fourth Quadrant

Fig. 2
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Similarly, the point P2 in Fig. 2 is completely determined

by the symbol (-3, 5). Observe that in such a symbol the x of

the point is written first, the y second. The two numbers x

and y, determining the position of a point, are called the

coordinates of the point, the x being called the x-coordinate

or abscissa, the y being called the y-coordinate or ordinate

of the point. What are the coordinates of P3 and PA in

Fig. 2?

The two axes of coordinates divide the plane into four regions

called quadrants, numbered as in Fig. 2. The quadrant in

which a point lies is completely determined by the signs of its

coordinates. Thus points in the first quadrant are character-

ized by coordinates (+, -+-), those in the second by (— , +),
those in the third by (— , — ), and those in the fourth by (-f, — ).

Square-ruled paper (so-called coordinate or cross section

paper) is used to advantage in " plotting " (i.e. locating) points

by means of their coordinates.

5. Magnitude and Directed Quantities. In the last article

we introduced the use of positive and negative numbers, i.e.

the so-called signed numbers, while in the preceding articles,

where we were concerned with the sides and angles of triangles,

we dealt only with unsigned numbers. The latter represent

magnitude or size only (as a length of 20 ft.), while the former

represent both a magnitude and one of two opposite direc-

tions or senses (as a distance of 20 ft. to the left of a given

line). We are thus led to consider two kinds of quantities :

(1) magnitudes, and (2) directed quantities. Examples of the

former are : the length of the side of a triangle, the weight of

a barrel of flour, the duration of a period of time, etc. Ex-

amples of the latter are : the coordinates of a point, the tem-

perature (a certain number of degrees above or below zero),

the time at which a certain event occurred (a certain number

of hours before or after a given instant), etc.
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Geometrically, the distinction between directed quantities

and mere magnitudes corresponds to the fact that, on the one

hand, we may think of the line segment AB as drawn from A to

B or from B to A ; and, on the other hand, we

may choose to consider only the length of ' '

*~~*
'

'

such a segment, irrespective of its direction.

Figure 3 exhibits the geometric representation

of 5, + 5, and — 5. A segment whose direc-

tion is definitely taken account of is called ^'directed segment.

The magnitude of a directed quantity is called its absolute

value. Thus the absolute value of — 5 (and also of+ 5) is 5.

Observe that the segments OMu MXPX (Fig. 2) representing

the coordinates of Px
are directed segments.

6. Directed and General Angles. In elementary geometry

an angle is usually defined as the figure formed by two half-

lines issuing from a point. However, it is often more serviceable

to think of an angle as being generated

by the rotation in a plane of a half-line

OP about the point as a pivot, start-

ing from the initial position OA and

ending at the terminal position OB (Fig.

4). We then say that the line OP has

generated the angle AOB. Similarly, if OP rotates from the

initial position OB, to the terminal position OA, then the angle

BOA is said to be generated. Considerations similar to those

regarding directed line segments (§ 5) lead us to regard one of

the above directions of rotation as positive andx the other as

negative. It is of course quite immaterial which one of the

two rotations we regard as positive, but

we shall assume, from now on, that

counterclockwise rotation is positive and

clockwise rotation is negative.

Still another extension of the notion Fig. 5
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of angle is desirable. In elementary geometry no angle greater

than 360° is considered and seldom one greater than 180°. But

from the definition of an angle just given, we see that the

revolving line OP may make any number of complete revolu-

tions before coming to rest, and thus the angle generated may
be of any magnitude. Angles generated in this way abound

in practice and are known as angles of rotation *

When the rotation generating an angle is to be indicated, it is

customary to mark the angle by means of an arrow starting at

the initial line and ending at the terminal line. Unless some

such device is used, confusion is liable to result. In Fig. G

30° 390' 750 1110

Fig. (5

angles of 30°, 390°, 750°, 1110°, are drawn. If the angles were

not marked one might take them all to be angles of 30°.

7. Measurement of Angles. For the present, angles will be

measured as in geometry, the degree (°) being the unit of measure. A
complete revolution is 360°. The other units in this system are the

minute ('), of which 60 make a degree, and the second ("), of which 60

make a minute. This system of units is of great antiquity, having been

used by the Babylonians. The considerations of the previous article then

make it clear that any real number, positive or negative, may represent an

angle, the absolute value of the number representing the magnitude of

the angle, the sign representing the direction of rotation.

v
Fig. 7

Consider the angle XOP = 0, whose vertex O coincides with the origin

of a system of rectangular coordinates, and whose initial line OX coin-

*For example, the minute hand of a clock describes an angle of —180°

n 30 minutes, an angle of — 540° in 90 minutes, and an angle of — 720° in 120

ninutes.
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cides with the positive half of the a;-axis (Fig. 7) . The angle is then

said to be in the first, second, third, or fourth quadrant, according as its

terminal .line OP is in the first, second, third, or fourth quadrant.

8. Addition and Subtraction of Directed Angles. The

meaning to be attached to the sum of two directed angles is analogous to

that for the sum of two directed

line segments. Let a and b be /* /&
two half-lines issuing from the / £,

Y

same point O and let (ab) repre-

sent an angle obtained by rotat- j£FSJ—' 5~
q

ing a half-line from the position jrIG# y

a to the position b. Then if we
have two angles (a&) and (6c) with the same vertex O, the sum (a6) + (6c)

of the angles is the angle represented by the rotation of a half-line from

the position a to the position b and then rotating from the position b to the

position c. But these two rotations are together equivalent to a single rota-

tion from a to c, no matter what the relative positions of a, 6, c may have

been. Hence, we have for any three half-lines a, b, c issuing from a point 0,

(1) (ab) + (bc)=(ac), (ob) + (bc)=0, (ab) = (cb)-(ca).

It must be noted, however, that the equality sign here means " equal,

except possibly for multiples of 360V The proof of the last relation is >

left as an exercise. ^^

EXERCISES \^\)
1. On square-ruled paper draw two axes of reference and then plot the

following points: (2, 3), (- 4, 2), (- 7, - 1), (0, - 3), (2, - 5), (5, 0).

2. What are the coordinates of the origin ?

3. Where are all the points for which x — 2? x =— 3 ? y — — 1 ?

y = ±? x = 0?

4. Show that any point P on the 2/-axis has coordinates of the form

(0, y) . What is the form of the coordinates of any point on the x-axis ?

5. A right triangle has the vertex of one acute angle at the origin and

one leg along the se-axis. The vertex of the other acute angle is at

(7, 10). What is the tangent of the angle at O ? *? -\

6. What angle does the minute hand of a clock describe in 2 hours

and 30 minutes ? in 4 hours and 20 minutes ? ' \ / a
7. Suppose that the dial of a clock is transparent so that it may be

read from both sides. Two persons stationed at opposite sides of the dial

observe the motion of the minute hand. In what respect will the angles

described by the minute hand as seen by the two persons differ?
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i X /

4 8. In what quadrants are the following angles :
87° ? 135° ? — 325° ?

540°? 1500°? -270°?

9. In what quadrant is 0/2 if is a positive angle less than 360° and in
the second quadrant ? third quadrant ? fourth quadrant ?

10. By means of a protractor construct 27° + 85° + (— 30°) + 20° +
(-45°).

11. By means of a protractor construct — 130° + 56° — 24°.

I

J



CHAPTER II

THE RIGHT TRIANGLE

9. Introduction. At the beginning of the preceding chap-

ter we described the fundamental problem of trigonometry to

be the " solution of the triangle," i.e. the problem of com-

puting the unknown elements of a triangle when three of the

elements (not all angles) are given. This problem can be

solved by finding relations between the sides and angles of a

triangle by means of which it is possible to express the un-

known elements in terms of the known elements. In order

to establish such relations, it has been found desirable to

define certain functions of an angle. One such function— the

tangent— was introduced in § 3 by way of preliminary illus-

tration.

In the present chapter, we shall give a new definition of the

tangent of an angle and also define two other equally impor-

tant functions— the sine and the cosine. It should be noted

that the definition given for the tangent in § 3 applies only to

an acute angle of a right triangle. For the purposes of a sys-

tematic study of trigonometry we require a more general defini-

tion, which will apply to any angle, positive or negative, and

of any magnitude. Such definitions are given in the next

article, in which the notion of a system of coordinates plays a

fundamental role, the notion of a triangle not being introduced

at all. After considering some of the consequences of our

definitions in §§ 11-13, we consider the way in which these

definitions enable us to express relations between the sides

and angles of a right triangle. These results are then imme-

diately applied to the solution of numerical problems by means

r
of tables and to applications in surveying and navigation.

11
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10. The Sine, Cosine, and Tangent of an Angle. We
may now define three of the functions referred to in § 3. To
this end let = XOP (Fig. 9) be any directed angle, and let

zyL

us establish a system of rectangular coordinates in the plane

of the angle such that the initial side OX of the angle is the

positive half of the sc-axis, the vertex being at the origin and

the y-axis being in the usual position with respect to the

#-axis. Let the units on the two axes be equal. Finally, let

P be any point other than on the terminal side of the angle

6, and let its coordinates be (x, y). The directed segment

OP = r is called the distance of P and is always chosen posi-

tive. The coordinates x and y are positive or negative accord-

ing to the conventions previously adopted. We then define

The sine of 8 =

The cosine of 6 =

ordinate of P_ y
distance of P~ r

abscissa of P x

distance of P
™* , * /v

ordinate of P y . . _

The tangent of 8 = -r

—

-. j-p=~, provided x =£ 0.*

These functions are usually written in the abbreviated forms

sin 0, cos 0, tan 0, respectively ; but they are read as " sine 0"

" cosine 0," " tangent 0." It is very important to notice that

the values of these functions are independent of the position

of the point P on the terminal line. For let P' (x\ y') be any

other point on this line. Then from the similar right triangles

xyrf and x'y'r 1

it follows that the ratio of any two sides

of the triangle xyr is equal in magnitude and sign to the

* Prove that x and y cannot be zero simultaneously.

t Triangle xyz means the triangle whose sides are x, y, z.
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ratio of the corresponding sides of the triangle x'y'r'. There-

fore the values of the functions just defined depend merely

on the angle 9. They are one-valued functions of 6 and are

called trigonometric functions.

Since the values of these functions are defined as the ratios

of two directed segments, they are abstract numbers. They

may be either positive, negative, or zero. Remembering that r

is always positive, we may readily verify that the signs of the

three functions are given by the following table.

Quadrant

Sine

Cosine

Tangent
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12. Values of the Functions for 30°, 150°, 210°, 330°. From

geometry we know that if one angle of a right triangle con-

tains 30°, then the hypotenuse is double the shorter leg,

which is opposite the 30° angle. Hence if we choose the

shorter leg (ordinate) as 1, the hypotenuse (distance) is 2,

Ml 'I<s^L
vz •vT

dLL±
t»

Fig. 11

and the other leg (abscissa) is V3. Figure 11 shows angles of

30°, 150°, 210°, 330° with all lengths and directions marked.

Hence we have

cos 30°=-^, tan 30* =—

,

2
'

V3
sin W-;|,

sin 150° =
^,

sin 210° =
2'

sin 330° = - -,
2'

cos 150° =- ^?, tan 150° = -—

,

2 V3

cos 210° = V3
2 '

cos 330c V3
2

:

tan 210° =
V3

J

tan 330° = -
V3

13. Values of the Functions for 60°, 120°, 240°, 300°. It is

left as an exercise to construct these angles and to prove that

sin 60° = ^5, cos 60c

sin 120° = -^,
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14. Sides and Angles of a Right Triacgle. Evidently any

right triangle ABC can be so placed in a system of coordi-

nates that the vertex of either acute

angle coincides with the origin O
and that the ad'jacent leg lies along

the positive end OX of the aj-axis

(Fig. 12). The following relations

then follow at once from the defini-

tions of the sine, cosine, and tangent

of § 10.

In any right triangle, the trigonometric functions of either acute

angle are given by the ratios

:

the sine

the cosine =

side opposite the angle

hypotenuse

side adjacent to the angle

the tangent

hypotenuse

side opposite the angle

side adjacent to the angle

'

These relations are fundamental in all that follows. They
should be firmly fixed in mind in such a way that they can be

readily applied to any right triangle in what-

ever position it may happen to be (for example

as in Fig. 13). The student should be able to

reproduce any of the following relations with-

out hesitation whenever called for. They

should not be memorized, but should be read

from an actual or imagined figure

:

b
Fig. 13 sin^l

cos A

sin B

cos B=-,
c

tan A = - , tan B =

Also the known relation

:

C2 = a2 + b2
.
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If any two elements (other than the right angle) of a right

triangle are given, we can then find a relation connecting these

two elements with any unknown element, from which relation

the unknown element can be computed.

15. Applications. The angle which a line from the eye to

an object makes with a horizontal line in the same vertical

plane is called an angle of elevation or an angle of depression,

Horizontal

Fig. 14

according as the object is above or below the eye of. the ob-

server (Fig. 14). Such angles occur in many examples.

Example 1. A man wishing to know the distance between two points

A and B on opposite sides of a pond locates a point C on the land (Fig.

15) such that AC = 200 rd., angle C = 30°, and angle B = 90°. Find the

distance AB.

AB
AG
AB = AC sin G

= 200 • sin 30°

100 rd.

Solution : sin C. (Why ?)

= 200 • * Fig. 15

Example 2. Two men stationed at points A and G 800 yd. apart and

in the same vertical plane with a balloon B, observe simultaneously the

angles of elevation of the balloon to be 30° and 45° respectively. Find the

height of the balloon.

Solution : Denote the height of the balloon DB by y, and let DC = x;

then AD = 800 - x.

L

800-x D x

Fig. 16
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Since tan 45° = 1, we have 1 =-,
x

1 y
and since tan 30° =s 1/V3, we have —

-== —
g^ _ x

'

Therefore x = y and 800 — x — y V3.

800
Solving these equations for y, we have y — = 292.8 yd.

V3 + 1

EXERCISES

• 1. In what quadrants is the sine positive ? cosine negative ? tangent

positive ? cosine positive? tangent negative ? sine negative ?

2. In what quadrant does an angle lie if

(a) its sine is positive and its cosine is negative ?

(6) its tangent is negative and its cosine is positive?

(c) its sine is negative and its cosine is positive ?

(d) its cosine is positive and its tangent is positive ?

3. Which of the following is the greater and why : sin 49° or cos 49° ?

£in 35° or cos 35° ?

4. If 6 is situated between 0° and 360°, how many degrees are there in

6 if tan = 1? Answer the similar question for sin = % ;
tan $ = — 1

.

5. Does sin 60° = 2 • sin 30° ? Does tan 60° = 2 • tan 30° ? What

can you say about the truth of the equality sin 2 = 2 sin 6 ?

M) The Washington Monument is 555 ft. high. At a certain place in

the plane of its base, the angle of elevation of the top is 60°. How far is

that place from the foot and from the top of the tower ?

—
"^. A boy whose eyes are 5 ft. from the ground stands 200 ft. from a

flagstaff. From his eyes, the angle of elevation of the top is 30°. How
high is the flagstaff ?

8. A tree 38 ft. high casts a shadow 38 ft. long. What is the angle

of elevation of/the top of the tree as seen from the end of the shadow ?

How far is i*4rom the end of the shadow to the top of the tree ?

i'rom the top of a tower 100 ft. high, the angle of depression of

two stones, which are in a direction due east and in the plane of the base

are 45° and 30° respectively. How far apart are the stones ?

.4ns. 100( V3 - 1) = 73.2 ft.
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10. Find the area of the isosceles triangle in which the equal sides 10

inches in length include an angle of 120°. Ans. 25V3 = 43.3 sq. in.

-^11. Is the formula sin 2 = 2 sin cos true when = 30° ? 60° ?

120°?

<l2! From a figure prove that sin 117° = cos 27°.

13. Determine whether each of the following formulas is true when
= 30°, 60°, IHS , 210

D
:

1 + tan2 = — -

—

COS2 '

1 +-1-—*-,
tan2 sin2

sin2 -f cos2 i 1.

,""i4. Let Pi(Xi, ?/i) and P-z(x2, yt) be any two points the distance be-

tween which is r (the units on the axes being equal) . If is the angle

that the line PiP% makes with the x-axis, prove that

x2 - Xi , ?/2
*r=^» = 2 r.

}l6. Computation of the Value of One Trigonometric

Function from that of Another.

J>±£Si

Fig. 17

Example 1. Given that sin =
f,

find the

values of the other functions.

Since sin is positive, it follows that is

an angle in the first or in the second quad-

rant. Moreover, since the value of the sine

is |, then y = 3 • k and r = 5 • k, where k is

any positive constant different from zero. (Why?) It is, of course,

immaterial what positive value we assign to k, so we shall assign the

value 1. We know, however, that the abscissa, ordinate, and distance

are connected by the relation x2 + y2 = r2 , and hence it follows that

x = ± 4. Figure 17 is then self-explanatory. Hence we have, for the first

quadrant, sin = f, cos = f , and tan = £ ; for the second quadrant,

sin = |, cos = — |, tan = — f

.

is negative, find the other trigonometric functions of

the angle 0.

Since sin is positive and tan is negative, must

be in the second quadrant. We can, therefore, con-

struct the angle (Fig. 18), and we obtain sin = T̂ ,

cos = — Y§, tan = — T\.
Fig. 18
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k17. Computation for Any Angle. Tables. The values of

the trigonometric functions of any angle may be computed by

the graphic method. For

example, let us find the

trigonometric functions of

35°. We first construct

on square-ruled paper,

by means of a protractor,

an angle of 35° and choose

a point P on the ter-

minal line so that OP
shall equal 100 units.

Then from the figure we

find that 0^=82 units

and MP = 57 units.

Therefore

TOT
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10

Fig
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20. — Graphical, T

60 60 70 60 90 100

able oe Trigonometric Functions
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EXERCISES

Find the other trigonometric functions of the angle 6 when

t£)tan0 = -3. 3. cos = 1$. 5. sin0 = f.

2. sin0 = -|. 4. tan0=f 6. cos0= — |.

rl) sin = f and cos is negative.

8. tan = 2 and sin is negative.

9. sin = — \ and tan is positive.

10. cos = § and tan is negative.

11. Can 0.6 and 0.8 be the sine and cosine, respectively, of one and

the same angle ? Can 0.5 and 0.9 ? Ans. Yes ; no.

12. Is there an angle whose sine is 2 ? Explain.

13. Determine graphically the functions of 20°, 38°, 70°, 110°.

14. From Fig. 20, find values of the following :

sin 10°, cos 50°, tan 40°, sin 80°, tan 70°, cos 32°, tan 14°, sin 14°.

15. A tower stands on the shore of a river 200 ft. wide. The angle of

elevation of the top of the tower from the point on the other shore exactly

opposite to the tower is such that its sine is \. Find the height of the

tower.

16. From a ship's masthead 160 feet above the water the angle of de-

pression of a boat is such that the tangent of this angle is /2 . Find the

distance from the boat to the ship. Ans. 640 yards.

18. Use of Tables of Trigonometric Functions. Examina-

tion of the tables of " Four Place Trigonometric Functions "

(p. 112) shows columns headed " Degrees," " Sine," " Tangent,"

" Cosine," and under each of the last three named a column

headed " Value " (none of the other columns eoncern us at pres-

ent). Two problems regarding the use of these tables now

present themselves.

1. To find the value of a function when the angle is given.

(a) Find the value of sin 15° 20'. In the column headed

" Degrees " locate the line corresponding to 15° 20' (p. 113) ; on

the same line in the " value " column for the " Sine," we read

the result : sin 15° 20' = 0.2644. On the same line, by using

the proper column, we find tan 15° 20' = 0.2742, and cos 15° 20'

= 0.9644.
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(b) Find the value of tan 57° 50'. The entries in the

column marked " Degrees " at the top only go as far as 45°

(p. 116). But the columns marked " Degrees " at the bottom

contain entries beginning with 45° (p. 116) and running back-

wards to 90° (p. 112). In using these entries we must use the

designations at the bottom of the columns. Thus on the line

corresponding to 57° 50' (p. 115) we find the desired value

:

tan 57° 50' = 1.5900. Also sin 57° 50' = 0.8465, and cos 57°

50' = 0.5324.

(c) Find the value of sin 34° 13'. This value lies between

the values of sin 34° 10' and 34° 20'. We find for the latter

sin 34° 10' = 0.5616

sin 34° 20' = 0.5640

Difference for 10' = 0.0024

Assuming that the change in the value of the function

throughout this small interval is proportional to the change in

the value of the angle, we conclude that the change for 1' in the

angle would be 0.00024. For 3', the change in the value of the

function would then be 0.00072. Neglecting the 2 in the last

place (since we only use four places and the 2 is less than 5),

we find sin 34° 13' = 0.5616 + 0.0007 = 0.5623. This process is

called interpolation. With a little practice all the work in-

volved can and should be done mentally ; i.e. after locating the

place in the table (and marking it with a finger), we observe

that the " tabular difference " is " 24 "
; we calculate mentally

that .3 of 24 is 7.2, and then add 7 to 5616 as we write down

the desired value 0.5623.

Similarly we find tan 34° 13' = 0.6800 (the correction to be

added is in this case 12.9 which is " rounded off " to 13) and

cos 34° 13' = 0.8269. (Observe that in this case the correction

must be subtracted. Why ?)

2. To find the angle when a value of a function is given.

ere we proceed in the opposite direction. Given sin A =
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0.3289 ; find A. An examination of the sine column shows

that the given value lies between sin 19° 10' (= 0.3283) and.

> sin 19° 20'(= 0.3311). We note the tabular difference to be 28.

The correction to be applied to 19° 10' is then fa of 10' = ff

'

= -1/' = 2.1'. Hence A = 19° 12.1'. (With a four place table

do not carry your interpolation farther than the nearest tenth

of a minute.) (See § 20.) \

EXERCISES

* 1. For practice in the use of tables, verify the following :

(a) sin 18° 20' = 0.3145 (d) sin 27° 14' =0.4576 (g) sin 62° 24M =0.8862

(6) cos 37° 30' =0.7934 (e) cos 34° 11' =0.8272 (h) cos 59° 46' .2 =0.5034

(c) tan 75° 50' =3.9617 (/) tan 68° 21' = 2.5173 (i) tan 14° 55'.6 =0.2665

Assume first that the angles are given and verify the values of the

functions. Then assume the values of the functions to be given and
verify the angles.

2. A certain railroad rises 6 inches for every 10 feet of track. What
angle does the track make with the horizontal ?

NJ

3. On opposite shores of a lake are two flagstaffs A and B. Per-

pendicular to the line AB and along one shore, a line BC = 1200 ft. is

measured. The angle ACB is observed to be 40° 20'. Find the distance

between the two flagstaffs.

4. The angle of ascent of a road is 8°. If a man walks a mile up the

road, how many feet has he risen ?

\

5. How far from the foot of a tower 150 feet high must an observer,

6 ft. high, stand so that the angle of elevation of its top may be 23°.5 ?

6. From the top of a tower the angle of depression of a stone in the

lane of the. base is 40° 20'. What is the angle of depression of the stone

from a point halfway down the tower?

7. The altitude of an isosceles triangle is 24 feet and each of the equal

angles contains 40° 20'. Find the lengths of the sides and area of the

triangle.

8. A flagstaff 21 feet high stands on the top of a cliff. From a point

on the level with the base of the cliff, the angles of elevation of the top

and bottom of the flagstaff are observed. Denoting these angles by «
and /3 respectively, find the height of the cliff in case sin a = -/7 and

Ans. 75 feet.
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9. A man wishes to find the height of a tower CB which stands on a

horizontal plane. From a point A on this plane he finds the angle of ele-

vation of the top to be such that sin CAB = f . From a point A' which

is on the line AC and 100 feet nearer the tower, he finds the angle of

elevation of the top to be such that tan CA'B'= §. Find the height of

fche tower.

10. Find the radius of the inscribed and circumscribed circle of a regu-

ar pentagon whose side is 14 feet.

11. If a chord of a circle is two thirds of the radius, how large an

angle at the center does the chord subtend ?

19. Computation with Approximate Data. Significant

Figures. The numerical applications of trigonometry (in sur-

veying, navigation, engineering, etc.) are concerned with com-

puting the values of certain unknown quantities (distances,

angles, etc.) from known data which are secured by measure-

ment. Now, any direct measurement is necessarily an approxi-

mation. A measurement may be made with greater or less

accuracy according to the needs of the problem in hand— but

it can never be absolutely exact. Thus, the information on a

signpost that a certain village is 6 miles distant merely

means that the distance is 6 miles to the nearest mile— i.e. that

the distance is between 5± and 6^ miles. Measurements in a

physical or engineering laboratory need sometimes to be made to

the nearest one ' thousandth of an inch. For example the bore

of an engine cylinder may be measured to be 3.496 in., which

means that the bore is between 3.4955 in. and 3.4965 in.

A simple convention makes it possible to recognize at a

glance the degree of accuracy implied by a number represent-

ing an approximate measure (either direct or computed). This

convention consists simply in the agreement to write no more

figures than the accuracy warrants. Thus in arithmetic 6 and

6.0 and 6.00 all mean the same thing. This is not so, when

these numbers are used to express the result of measurement

or the result of computation from approximate data. Thus 6

means that the result is accurate to the nearest unit, 6.0 that
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it is accurate to the nearest tenth of a unit, 6.00 to the nearest

hundredth of a unit.

These considerations have an important bearing on practical

computation. If the side of a square is measured and found

to he 3.6 in. and the length of the diagonal is computed by

the formula : diagonal =/ side x V2^4t would be wrong to write

= 3.6 x V2 = 3.6 x 1.4142 = 5.09112 in. The correct result

is 5.1 in. For the computed value of the diagonal cannot be

more accurate than the measured value of the side. The result

5.09112 must therefore be " rounded off " to two significant

figures, which gives 5.1. As a matter of fact for the purpose

of this problem V2 = 1.4142 should be rounded before multi-

plication to V2 = 1.4 ; thereby reducing the amount of labor

necessary.

A number is " rounded off," by dropping one or more digits

at the right and, if the last digit dropped is 5+, 6, 7, 8, or 9

increasing the preceding digit by 1.* Thus the successive

approximations to w obtained by rounding of 3.14159 ••• are

3.1416, 3.142, 3.14, 3.1, 3.

20. The Number of Significant Figures of a number (in the

decimal notation) may now be defined as the total number of

digits in the number, except that if the number has no digits

to the right of the decimal point, any zeros occurring between

the decimal point and the first digit different from zero are

not counted as significant. Thus, 34.06 and 3,406,000 are both

numbers of four significant figures : while 3,406,000.0 is a

number of eight significant figures.!

* In rounding off a 5 computers round off to an even digit. Thus 1.415

would be rounded to 1.42, whereas 1.445 would be rounded to 1.44. If this

rule is used consistently the errors made will tend to compensate each other.

t Confusion will arise in only one case. For example, if 3999.7 were

rounded by dropping the 7 we should write it as 4000 which according to the

above definition would have only 1 significant figure, whereas we know from

the way it was obtained that all four figures are significant. In such a case

we may underscore the zeros to indicate they are significant or use some

other device.
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In any computation involving multiplication or division the

number of significant figures is generally used as a measure of

the accuracy of the data. A computed result should not in

general contain more significant figures than the least accurate

of the data. But computers generally retain one additional

figure during the computation and then properly round off the

final result. Even then the last digit may be inaccurate— but

that is unavoidable.

The following general rules will be of use in determining

the degree of accuracy to be expected and in avoiding useless

labor

:

1. Distances expressed to two significant figures call for

angles expressed to the nearest 30' and vice versa.

2. Distances expressed to three significant figures call for

angles expressed to the nearest 5', and vice versa.

3. Distances expressed to four significant figures call for

angles expressed to the nearest minute, and vice versa.

4. Distances expressed to five significant figures call for

angles expressed to the nearest tenth of a minute, and vice,

versa.

In working numerical problems the student should use every

safeguard to avoid errors. Neatness and systematic arrange-

ment of the work are important in this connection. All work

should be checked in one or more of the following ways.

1. Gross errors may be detected by habitually asking oneself

:

Is this result reasonable or sensible ? 2. A figure drawn to

scale makes it possible to measure the unknown parts and to

compare the results of such measurements with the computed

results. 3. An accurate check can often be secured with com-

paratively little additional labor by computing one of the

quantities from two different formulas or by verifying a

known relation. For example, if the legs a, b of a right tri-

angle have been computed by the formulas a = c sin A and

b = c cos A, we may check by verifying the relation a2 + b2 = c2.
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Example. A straight road is to be built from a point A to a point B
which is 5.92 miles east and 8.27 miles north of

A. What will be the direction of the road and

its length ?

5.92 , D 8.27
Formulas

:

Therefore

tan A = AB =
8 27 cos A

tan A = 0.716 and A = 35° 35',

cos^ = 0.813 ^£ = 10.17.*

Check by a2 + &2 = c2 .

From a table of squares (p. 107, see § 21)

(5.92) 2 = 35.05

(8.27)2 = 68.39 (10.17) 2 = 103.4.

103.4

21. Use of Table of Squares. Square Roots. The table

of squares of numbers (p. 106) may be used to facilitate com-

putation. In the example of the last article, we required the

square of 5.92. We find 5.9 on p. 107 in the left-hand column

and find the third digit 2 at the head of a certain column. At

the intersection of the line and column thus determined we

find the desired result (5.92)2 = 35.05. The square of 8.27 is

found similarly at the intersection of the line corresponding

to 8.2 and the column headed 7. To find (10.17) 2
, we find the

line corresponding to 1.0 (the first two digits, neglecting the

decimal point) and find (1.01)* = 1.020 and (1.02) 2 = 1.040.

By interpolating, as explained in § 18, we find (1.017) 2 = 1.034.

Now shifting the decimal point one place in the "number"

requires a corresponding shift of two places in the square.

Hence, (10.17)* = 103.4.

The table can also be used to find the square root of a num-

ber. Thus to find V2 we find, on working backwards in this

table, that 2 lies between 1.988 [=(1.41)*] and 2.016 [=(1.42)*].

By interpolation we then find V2 m 1.414, correct to four

significant places. [Tabular difference = 28 ; correction = -*^

= 4 in the fourth place.]

The retention of four significant figures in AB is justified because the

number is so small at the left.
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EXERCISES

1. From an observing station 357 ft. above the water, the angle of

depression of a ship is 2° 15 f
. Find the horizontal distance to the ship in

yards .

2l A projectile falls in a straight line making an angle of 25° with the

horizontal. Will it strike the top of a tree 24 meters high which is 72 meters

from the point where the projectile would strike the ground ?

3. At a point 372 ft. from the foot of a cliff surmounted by an observa- \*~* T
ion tower the angle of elevation of the top of the tower is 51° 25', and of 2-**}.^

the foot of the tower 31° 55'. Find the height of the cliff and of the

tower.

f*. How far from the foot of a flagpole 130 ft. high must an observer

stand so that the angle of elevation of the top of the pole will be 25° ?

5. GA is a horizontal line, T is a point vertically above i; 5a point

AG
vertically below A. The angle BGA in minutes is Find Z BG T

4000

in degrees and minutes, given GA = 10,340 meters ; AT = 416.4 meters.

6. It is desired to find the height of a wireless tower situated on the

top of a hill. The angle subtended by the tower at a point 250 ft. below"

the base of the tower and at a distance measured horizontally of 2830 ft.

from it is found to be 2° 42'. Find the height of the tower.

7. From a tower 428.3 ft. high the angles of depression of two objects

tuated in the same horizontal line with the base of the tower and on the

same side are 30° 22' and 47° 37'. Find the distance between them.

8. The summit of a mountain known to be 13,260 ft. high is seen at

an angle of elevation of 27° 12' from a camp located at an altitude of

6359 ft. Compute the air-line distance from the camp to the summit of

the mountain.

9. Two towns A and B, of which B is 25 miles northeast of A, are to

be connected by a new road. 11 miles of the road is constructed from

A in the direction N. 21° E. ; what must be length and direction of the

remainder of the road, assuming it to be straight ?

22. Applications in Navigation. We shall confine ourselves

to problems interne sailing; i.e. we shall assume that the dis-

tances considered are sufficiently small so that the curvature of

the earth may be neglected.
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Definition. The course of a

ship is the direction in which she

is sailing. It is given either by

the points of a mariner's compass

(Fig. 21) as K E. by N. or in

degrees and minutes measured

clockwise from the north. Observe

that a " point " on a mariner's

compass is 11° 15'. Hence for

example, the course of a ship

could be given either as N. E. by

N. or as 33° 45;
. A course S. E. by S. is the same as a course

of 146° 15'.

The distance a ship travels on a given course is always given

Departure in nautical miles or knots. A knot is the length

of a minute of arc on the earth's equator. (The

earth's circumference is then 360 x 60 = 21,600

knots.) The horizontal component of the dis-

tance is called the departure, the vertical com-

ponent is called the difference in latitude. The

departure is usually given in miles (knots), the

difference in latitude in degrees and minutes.
Fig. 22

Example. A ship starts from a position in 22° 12' N. lati-

tude, and sails 321 knots on a course of 31° 15'. Find the

difference in latitude, the departure, and the latitude of the

new position of the ship,

diff. in lat. = distance times cosine of course

= 321 cos 31° 15'

= 321 x 0.855 = 274' = 4° 34'.

departure = distance times sine of course

= 321 sin 31° 15'

= 321 x 0.519 = 167 knots.

Since the ship is sailing on a course which increases the lati-
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tude, the latitude of the new position is 22° 12' -f 4° 34' = 26°

46' N.

Knowing the difference in latitude and the departure, we are

able to calculate the new position of the ship, if the original

position is known. In the preceding example, we found the

latitude of the new position from the difference in latitude.

To find the difference in longitude from the departure is not

quite so simple. As the latitude increases, a given departure

implies an increasing difference in longitude. Only on the

equator is the departure of one nautical mile equivalent to a

difference in longitude of one minute.

The adjacent figure shows a departure AB in latitude
<f>.

The difference in longitude (in minutes) corresponding to AB
is clearly the number of nautical miles in

CD. Now arcs AB and CD are proportional

to their radii PA and OC. Or,

CD = °C
~ . AB = A**-. (Why ?)PA cos<j>

v J J

In practice, it is customary to take for
<f>

in the determination of difference in longi-

tude the so-called middle latitude, i.e. the

latitude halfway between the original latitude and the final

latitude.

Thus in the preceding example, the original latitude was

22° 12' N, the final latitude was 26° 46' N. The middle lati-

tude is therefore J (22° 12' + 26° 46')= 24° 29'. Hence

,-pp , , -, departure
difference in longitude = .

. , ,,—,

—

,—=r-
cosme or middle latitude

167 167 = lg4 , m 30 4 ,

Fig. 23

cos 24° 29' 0.910

The determination of the position of a ship from its course

and distance is known as dead reckoning. It is subject to con-

siderable inaccuracy and must often in practice be checked by



II, § 22] THE RIGHT TRIANGLE 31

direct determination of position by observations on the sun

or stars.

EXERCISES

1. A ship sails N. E. by E. at the rate of 12 knots per hour. Find the

rate at which it is moving north.

2. A ship sails N. E. by N. a distance of 578 miles. Find its departure

and difference in latitude.

3. A ship sails on a course of 73° until its departure is 315 miles. Find

the actual distance sailed. Find also its difference in latitude.

4. A ship sails from latitude 47° \& N. 670 miles on a course N. W.
by N. Find the latitude arrived at.

5. A ship sails from latitude 30° 24' N. and after 25 hours reaches lati-

tude 35° 26' N. Its course was N. N. W. Find the average speed of the

ship.

6. A vessel sails from lat. 24° 30' N., long. 30° 15 W., a distance of 692

miles on a course of 32° 20'. Find the latitude and longitude of its new
position.

7. A vessel sails from lat. 10° 30' S., long. 167° 20' W., a distance of

692 miles on a course of 152° 30 f
. Find the latitude and longitude of its

new position.



CHAPTEE III

SIMPLE TRIGONOMETRIC RELATIONS

/2Z. Other Trigonometric Functions. The reciprocals of

' the sine, the cosine, and the tangent of any angle are called,

respectively, the cosecant, the secant, and the cotangent of

that angle. Thus,

cosecant = dlstance of P= - (provided y =#= 0).
ordinate of P y

, r. distance of P r , . , q , ANsecant = ——
:

= - (provided x^=0).
abscissa of P x

f\ nsoissj-i Or r^ ^v

cotangent =
:

—— — - (provided y ^= 0).
ordinate of P p

These functions are written esc 0, sec 0, ctn 0. From the

definitions follow directly the relations

esc 6= —
, sec 8 = -, ctn 6

sin ' cos 9
'

tan 8

or

esc • sin = 1, sec 6 • cos = 1, ctn • .tan = 1.

To the above functions may be added versed sine (written versin), the

coversed sine (written coversin), and the external secant (written exsec),

which are defined by the equations versin = 1 — cos 0, coversin =
1— sin 0, and exsec = sec — 1. Of importance in navigation and service-

able in other applications (see § 88) is the haversine (written hav)

which is defined to be equal to one half the versed sine ; i.e.

have = |(1 — cos 0).

r

24. The Representation of the Functions by Lines. Con-

sider an angle in each quadrant and about the origin draw

32
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Fig. 24

a circle of unit radius. Let P(x, y) be the point where the

circle meets the terminal side of 6. Then

sin 6 = ¥=zy, cos 6 = ^ = x,

i.e. the sine is represented by the ordinate of P and the cosine

by the abscissa. Hence the sine and cosine have respectively

the same signs as the ordinate and abscissa of P.

If we draw a tangent to the circle at the point A where the

Fig. 25

circle meets the a^axis and let the terminal line of 9 meet this

tangent in Q, we have

tenO = ^Q = AQ, sec0 = -^2=OQ.

Note that when 6 = 90°, 270°, and in general 90 + n . 360°,

270° + n • 360°, where n is any integer, there is no length AQ
cut off on the tangent line and hence these angles have no

tangents.

If we draw a line tangent to the circle at the point B where
D
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the circle cuts the y-axis and let the terminal line of 6 cut

this tangent in B, we have

ctn0=z
BK=B^ and csc £ = OR = QR

Fig. 26

EXERCISES

1. From Fig. 24 prove sin2 + cos2 = 1.

2. From Fig. 25 prove 1 + tan2 = sec2 0.

I.' From Fig. 26 prove 1 + ctn2 as csc2 0.

It Colon.
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Moreover, we have

y

tane = ^ =:=^°
x x cos 8

i r

and, similarly,
• cos 6

ctn6 = ^—S-.

,
sin 8

26. Identities. By means of the relations just proved

any expression containing trigonometric functions may be

put into a number of different forms. It is often of the

greatest importance to notice that two expressions, although

of a different form, are nevertheless identical in value. (How

was an " identity" defined in algebra ?)

The truth of an identity is usually established by reducing

both sides, either to the same expression, or to two expres-

sions which we know to be identical. The following examples

will illustrate the methods used.

Example 1. Prove the relation sec2 + esc2 = sec2 esc2 0.

We may write the given equation in the form

+ -^— = sec2 esc2
0,

cos2 sin2

sin2 + cos2

cos2 sin2

1

= sec2 esc2 0,

= sec2 esc2
0,

which reduces to

cos2 sin2

sec2 esc2 = sec2 esc2 0.

Since this is an identity, it follows, by retracing the steps, that the

given equality is identically true.

Both members of the given equality are undefined for the angles 0°, 90°,

180°, 270°, 360°, or any multiples of these angles.

cos2

Example 2. Prove the identity 1 4- sin —J
1 - sin

Since cos2 = 1 — sin2 0, we may write the given equation in the form

1 + sin = 1 "" S1"2 9
or 1 + sin = 1 + sin 0.

1 - sin
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As in Example 1, this shows that the given equality is identically true.

The right-hand member has no meaning when sin = 1 , while the left-

hand member is defined for all angles. We have, therefore, proved that

the two members are equal except for the angle 90° or (4 n-f 1)90°, where
n is any integer.

The formulas of § 25 may be used to solve examples of the

type given in § 16.

Example 3. Given that sin = ft and that tan is negative, find the

values of the other trigonometric functions.

Since sin2 + cos2 = 1, it follows that cos = ± Jf , but since tan is

negative, lies in the second quadrant and cos0 must be — ||. More-
over, the relation tan = sin 0/cos gives tan = —

ft. The reciprocals

of these functions give sec = — ||, esc = y, ctn — — *g.

EXERCISES

1. Define secant of an angle ; cosecant ; cotangent.

2. Are there any angles for which the secant is undefined ? If so,

what are the angles ? Answer the same question for cosecant and co-

tangent.

3. Define versed sine ; coversed sine ; haversine.

4. Complete the following formulas :

sin2 6 + cos2 = ? 1 + tan2 = ? 1 + ctn2 = ? tan = ?

Do these formulas hold for all angles ?

5. In what quadrants is the secant positive ? negative ? the cosecant

positive ? negative ? cotangent positive ? negative ?

6. Is there an angle whose tangent is positive and whose cotangent is

negative ?

7. In what quadrant is an angle situated if we know that

(a) its sine is positive and its cotangent is negative ?

(b) its tangent is negative and its secant is positive ?

(c) its cotangent is positive and its cosecant is negative ?

—'—*«••«£• Express sin2 + cos so that it shall contain no trigonometric

sA function except cos 0.

9. Transform (1 + ctn2 0)csc so that it shall contain only sin 0.

10. Which of the trigonometric functions are never less than one in

absolute value ?

11. For what angles is the following equation true : tan = ctn ?

"^^wU- 12. How many degrees are there in when ctn = 1? ctn — — 1 ?

sec = V2 ? esc = V£ ?

( H <^c3?
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13. Determine from a figure the values of the secant, cosecant, and

cotangent of 30°, 150°, 210°, 330°.

14. Determine from a figure the values of the secant, cosecant, and

cotangent of 45°, 135°, 225°, 315°.

15. Determine from a figure the values of the sine, cosine, tangent,

secant, cosecant, and cotangent of 60°, 120°, 240°, 300°.

16. Find from the following equations.

(a) sin0=£. (i) tan0= — 1.

(6) sin = - \. (j) ctn = - 1.

(c) cos = \. (k) tan = 1.

(d) cos = - £. (I) ctn = 1.

(e) sec = 2. (m) tan2 = 3.

(/) sec = - 2. (n) sin = 0.

(gr) esc = 2. (b) cos = 0.

(h) esc =•- 2. O) tan = 0.

Prove the following identities and state for each the exceptional values

of thjtvariables, if any, for which one or both members are undefined :

cos
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quadrants. Let OP be the terminal line of and OP' the

terminal line of 90° - 0. Take OP' = OP and let (x, y) be

Fig. 27

the coordinates of P and (x', y') the coordinates of P\
in all four figures we have

x' = y> y
f = x

>
r' = r.

Then

Hence

sin(9O°-0)= ^ = -: cos

Also,

cos (90° - 0) = - = 2 = sin 0,
r r

tan (90° -6)= ^ = -=ctn0.
x' y

esc (90° — 0)=sec0,

sec (90° -0)= esc 0,

ctn (90° -0)= tan 0.

Definition. The sine and cosine, the tangent and cotangent,

the secant and cosecant, are called co-functions of each other.

The above results may be stated as follows : Any function

of an angle is equal to the corresponding co-function of the com-

plementary angle.*

28. The Trigonometric Functions of 180° — 6. By draw-

ing figures as in § 27, the following relations may be proved

:

sin (180° - 6)= sin 0, esc (180° - 6) = esc 0,

cos (180° - 0)= - cos 0, sec (180° - 0)= - sec 0,

tan (180° - 0)= - tan 0, ctn (180° - 0) = - ctn 0.

The proof is left as an exercise.

* Two angles are said to be complementary if their sum is 90°, regardless

of the size of the angles.
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29. The result of § 27 shows why it is possible to arrange

the tables of the trigonometric functions with angles from 0°

to 45° at the top of the pages and angles from 45° to 90° at

the bottom of the pages. For example, since sin (90°— 0)= cos 0,

the entry for cos will serve equally well for sin (90° — 6).

As particular instances we may note sin 67° = cos 23°, tan 67°

= ctn 23°, cos 67° = sin 23°. Verify these from the table.

The result of § 28 enables us to find the values of the func-

tions of an obtuse angle from tables that give the values only

for acute angles. It will be noted that § 28 says that any

function of an obtuse angle is in absolute value equal to the same

function of its supplementary angle but may differ from it in

sign.

Thus to find tan 137° we know that it is in absolute value

the same as tan (180° - 137°)= tan 43° = 0.9325. But tan 137°

is negative. Hence

tan 137° = - 0.9325.

Similarly, sin 137°= 0.6820.

cos 137° = - 0.7314.

EXERCISES

Find the values of the following :

tan 146°, sin 136°, cos 173°, tan 100°, cos 96°, sin 138°,

tan 98°, sin 145°, cos 168°, cos 138°, tan 173°, cos 157°.



CHAPTER IV

OBLIQUE TRIANGLES

30. Law of Sines. Consider any triangle ABC with the

altitude CD drawn from the vertex C (Fig. 28).

In all cases we have sin A

Therefore, dividing, we obtain

sin A a a= - , or
sin B b sin A

(i)

(2)
sin B

If the perpendicular were dropped from B, the same argu-

ment would give a/sin A = c/sin C. Hence, we have

a b c

sin A sin B sin C

This law is known as the law of sines and may be stated as

follows : Any two sides of a triangle are proportional to the

sines of the angles opposite these sides.

31. Law of Cosines. Consider any triangle ABC with the

altitude CD drawn from the vertex C (Fig. 29).

In Fig. 29 a

AD = b cos A ; CD = b sin A ; DB = c — b cos A.

In Fig. 29 b

AD = — b cos A ; CD = b sin A ; DB = c — b cos A.

In both figures

a2 = DB2
-f CZ)2

.

40

d
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Therefore
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a 1 = c2 - 2 be cos A + b2 cos2 A + b2 sin2 A
= c2 — 2bc cos ^ + (cos2 A + sin2 ^1)62

,

o c

whence

a2 _ tf. + C2 _ 2 be cos i4.

The result holds also when A is a right angle. Why ?

Similarly it may be shown that

b2 = c2 + a2 — 2 ca cos £,

c2 = a2 + b2 — 2 a6 cos C.

Any one of these similar results is called the law of cosines.

It may be stated as follows

:

Tlie square of any side of a triangle is equal to the sum of the

squares of the other two sides diminished by twice the product of

these two sides times the cosine of their included angle*

32. Solution of Triangles. To solve a triangle is to find

the parts not given, when certain parts are given. From

geometry we know that a triangle is in general determined

when three parts of the triangle, one of which is a side,

are given.f Eight triangles have already been solved

(§ 15), and we shall now make use of the laws of sines and

cosines to solve oblique triangles. The methods employed

will be illustrated by some examples. It will be found

advantageous to construct the triangle to scale, for by so doing

one can often detect errors which may have been made.

* Of what three theorems in elementary geometry is this the equivalent ?

t When two sides and an angle opposite one of them are given, the triangle

is not always determined. Why ?
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33. Illustrative Examples.

Example 1. Solve the triangleAB C, given

= 276 A = 30° 20', B = 60° 45', a = 276.

Solution :

C = 180° - (A+ B) = 180° - 91° 5' = 88° 55';

: _ a sin B _ 270 sin 00° 45' = (270) (0*8725) = 476 9 .

sin^l ' sin 30° 20' 0.5050

also

c - ^_sill_^ - 276 sin 88° 55' _ (276 ) (0.9998) __ 546 4
sinA sin 30° 20' 0.5050

"Check : It is left as an exercise to show that for these values we have

c2 = a2 + b2 — 2 ab cos C.

Example 2. Solve the triangle ABC, given

A = 30°, b = 10, a = 6.

{? Constructing the triangle ABC, we see that

two triangles AB X C and AB2 C answer the descrip-

* tion since b > a > altitude CD.

Solution : Now

***! = *, or sin B, =^^ =0.833,
sin A a a

whence B\ = 56°. 5.

But

B2 = 180° - B x = 180° - 56°.5 = 123°.5,

and

Ci = 180° -{A + 50= 180° - 86°.5 = 93°. 5,

C2 = 180° - {A + ft) = 180° - 153°. 5 = 26u.5.

Now
C2 _ sin C2 or C2

_ a sin C2 _ (6) (0.446) _ g 35
a sin ^1

'

sin -4 0.500

Also

Ci = 8inC1 . or Ci=
asinC2 ==

(6)(0.998)_ 1198
a sin -4

'

sin J. 0.500

Check: Ci
2 = a2 + &2 — 2 ab cos 0i.

143.5 = 36 + 100 +(2) (6) (10) (0.061) = 143.3.

C22 = a2 + ^2 _ 2 a& cos C2 .

28.62 = 36 + 100-(2)(6)(10)(0.895) = 28.60.
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Example 3. Solve the triangle ABC, given a = 10, 6 = 6, C = 40°.

Solution : c2 = a2 + 62 — 2 ab cos (7

= 100 + 36 - (120) (0.766)= 44.08.

Therefore c = 6.64. Now

sin ^ = asinC = (10)(0.643) =
c 6.64

'

i.e. A = 104°. 5. Likewise,

sing = 6sinC = (6X0.643) =
c 6.64

'

Check : A + B + C = 180°.0.

Example 4. Solve the triangle ABC when
C

a = 7, 6 = 3, c = 5.

From the law of cosines,

&2 i C2 _ a2 iCOSA=
26c =-, = -0.800,

cos B = ?l±^l»! = 15 = 0.928,
2 ac 14

coS C = ?l+-^li? = 11 = 0.786.
2 06 14

i.e.
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3. Solve the triangle ABC when
(a) A = 37° 20', a = 20, 6 = 26

;
(c) 4 = 30°, a = 22, 6 = 34.

(6; ^L = 37° 20', a = 40, 6 = 26;

(4/^h order to find the distance from a point A to a point B, a line

-4C and the angles CAB and .A (72? were measured and found to be

300 yd., 60° 30', 5.6° 10' respectively. Find the distance AB.

5. In a parallelogram one side is 40 and one diagonal 90. The angle

between the diagonals (opposite the side 40) is 25°. Find the length of

the other diagonal and the other side. How many solutions ?

6. Two observers 4 miles apart, facing each other, find that the angles

of elevation of a balloon in the same vertical plane with themselves are

60° and 40° respectively. Find the distance from the balloon to each

observer and the height of the balloon.

7. Two stakes A and B are on opposite sides of a stream ; a third

stake C is set 100 feet from A, and the angles A CB and CAB are observed

to be 40° and 110°, respectively. How far is it from A to B ?

8. The angle between the directions of two forces is 60°. One force

is 10 pounds and the resultant of the two forces is 15 pounds. Find the

other force.*

9. Eesolve a force of 90 pounds into two equal components whose

directions make an angle of 60° with each other.

10. An object B is wholly inaccessible and invisible from a certain

point A. However, two points C and D on a line with A may be found

such that from these points B is visible. If it is found that CD = 300 feet,

AC = 120 feet, angle DCB = 70°, angle CDB - 50°, find the length AB.

11. Given a, 6, A, in the triangle ABC. Show that the number of

possible solutions are as follows :

A<90°
f a< b sin A no solution,

I b sinA < a < b two solutions,

a>b
one solution.

| a = b sinA
j

^^90°
(a_6 no solution,

a> b one solution.

12. The diagonals of a parallelogram are 14 and 16 and form an angle

of 50°. Find the length of the sides.

* It is shown in physics that if the line segments AB
and AC represent in magnitude and direction two

forces acting at a point A, then the diagonal AD of the

parallelogram ABCD represents both in magnitude and

direction the resultant of the two given forces.
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13. Resolve a force of magnitude 150 into two components of 100 and
80 and find the angle between these components.

14. It is sometimes desirable in surveying to extend a line such as AB

in the adjoining figure. Show that this can be done by means of the

broken line ABCDE. What measurements are necessary ?

15. Three circles of radii 2, 6, 5 are mutually tangent. Find the angles

between their lines of centers.

16. In order to find the distance between two objects A and B on op-

posite sides of a house, a station C was chosen, and the distances CA
= 500 ft., CB = 200 ft., together with the angle ACB = 65° 30', were
measured. Find the distance from A to B.

17. The sides of a field are 10, 8, and 12

rods respectively. Find the angle opposite the

longer side.

18. From a tower 80 feet high, two objects,

A and B, in the plane of the base are found to

have angles of depression of 13° and 10° respec-

tively ;
thejiorizontal angle subtended by A and B at the foot C of the

towerjedBP. Find the distance from A to B.

Areas of Oblique Triangles.

When tivo sides andjjie included angle are given.

noting the area byQfjJire have from geometry

8 = i ch,

but h = b sin A ; therefore

(1) S = ±cbsmA.
Likewise,

S = i ab sin C and S = \ac sin B.Fig. &i

2. When a side and two adjacent angles are given.

Suppose the side a and the adjacent angles B and C to be

given. We have just seen that 8 = \ ac sin B. But from the

law of sines we have
a sin C
sin A
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Therefore

Q_ a2
' sin B sin C
2 sin^t

But sin A = sin [180° - (B + C)]= sin (5 + C). Therefore

q_ a2 sin jB sin (7

^~ ~2 sin (B+C)'

j 3. jWhen the three sides are given.

^*"We have seen that S = \ be sin A. Squaring both sides of

this formula and transforming, we have

£2 = 2_1 sin2 ^l =— (l-cos2 ^l)
4 4

= 1(1 + 003.4). |(1- cos^);

whence, by the law of cosines,

8*wmWl b* + c2 - a2\ bcf1
fr
2 + c2 - a2

^
2\ 26c y 2^ 26c J

^ 2&c + &2 + c2 -a2 2 5c - b2 - c2 + a2

4
'

4

_6+_c_-j-a 5-f-c — a a—b + c
(
a+J^c>

~ 2 * 2 ' 2 *
" 2

which may be written in the form

S2 = s(s-a)(s-b)(s-c),

where 2s = a + 6 + c. Therefore,

(2) S= Vs(s -a)(s- b) (s-c).

f 35^ The Radius of the Inscribed Circle. If r is the radius

of-£ne inscribed circle, we have from elementary geometry,

since s is half the perimeter of the triangle, S = rs ; equating

this value of 8 to that found in equation (2) of the last article

and then solving for r, we get,

-v
(s — a)(s — b)(s — c)

s
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EXERCISES

Find the area of the triangle ABC, given

\> 1, a = 25, b = 31.4, C = 80° 25'. 4. a = 10, b = 7, C = 60°.

2- & = 24, c = 34.3, J. = 60° 25'. N» 5. a = 10, b = 12, C = 60°.

3. a = 37, 6 = 13, C = 40°. ^ 6. a = 10, 6 = 12, C = 8\

7. Find the area of a parallelogram in terms of two adjacent sides

and the included angle.

8. The base of an isosceles triangle is 20 ft. and the area is 100/V3
sq. ft. Find the angles of the triangle. Ans. 30°, 30°, 120°.

\j 9. Find the radius of the inscribed circle of the triangle whose sides

are 12, 10, 8.

10. How many acres are there in a triangular field having one of its

sides 50 rods in length and the two adjacent angles, respectively, 70°

and 60° ?and 60° \

3,1 nextThe Law of Tangents.

chapter the formulas in this

and the next article will be

needed.

Let CD be the bisector of

the angle G of the A ABC.
Through A draw a line II DC,

meeting BC produced in E.

Then CE = b. Why ? From

A draw a line q X DC meeting

CB in F. At F draw a line r J_ AF meeting AB in G.

AE=p.
Now AACF is isosceles. Why? The angle ACE = ZA

+ /.B and the bisector of Z.ACE is _L CD. Hence Z CAF
= Z CFA = ±Z(A + B). Moreover Z BAF= ZA-±Z(A
+ B) = ±Z(A-B).

Let

Now tan
A + B and tan

tan

tan

A + B

A-B



48 PLANE TRIGONOMETRY [IV, § 36

But £= !f= « + *. Why?

tan

Hence
tan

a,. Angles of a Triangle in Terms of the Sides. Con-

f
struct the inscribed circle of the triangle

and. denote its radius by r.. If the perim-

eter a + 6 + c = 2s, then (Fig. 36)

AE = AF=s -a.

BD = BF=s-b.
CD=CE = s-c. .

_ i ti r . , >- rThen tan i ^4 = , tan \ B — , tan I C =
s — a j s — b

where, from § 35, rrUr^L /\ .

=J(s-aXs-b)(s-c)
_,

A F tc £+£>/* VA A ->S-^i> + <WJ> M
38. Solution of Triangles by Means of the Haversine.

The haversine may be used advantageously in the solution of triangles,

(1) when two sides and the included angle are given
; (2) when the

three sides are given. The law of cosines gives

2havJ. = 1 - cos^l = 1 -
&2 + c2 - a2

2 6c

_ q2_(fr _ c)2

2 be

or 4 6chav A = a2 — (b — c) 2
.

1. If 6, c and A are given we may find a from the formula

(1) a2 =(b-c) 2 + Ibch&vA.

Similar formulas give b2 or c2 in terms of a, c, .B and a, 6, C respectively.

2. If a, 6, c are given, we may find A from the formula

(2) hav A = *,-<»- «)' = .('-W-Q •w
4 be 6c

Similar formulas will give B and 0,
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Example 1. Given A = 94°



CHAPTER V

39. The Invention of Logarithms. The extensive numeri-

cal computations required in business, in science, and in engi-

neering were greatly simplified by the invention of logarithms

by John Napier, Baron of Merchiston (1550-1617). By means

of logarithms we are able to replace multiplication and division

by addition and subtraction, processes which we all realize are

more expeditious than the first two.

If we consider the successive integral powers of 2

a)

Exponent x



V, § 39] LOGARITHMS 51

responding to 4096 and under their difference 5 we find the

desired quotient 32.

To make the above plan at all useful it is evident that our

table must be expanded so as to contain more numbers. First

we can expand our table so that it will contain numbers less

than 2, by subtracting 1 successively from the numbers in the

A. P. and by dividing successively by 2 the numbers in the

G.P.

(2)

In the second place we may find new numbers by inserting

arithmetic means and geometric means. Thus, if we take the

following portion of the preceding table

-5
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By continuing this process we can make any number appear

in the G. P. to as high a degree of approximation as we desire.

To prepare an extensive table, which gives values at small inter-

vals, is quite laborious. However, it has been done, and we

have printed tables so complete that actual multiplication of

any two numbers can" be replaced by addition of two other

numbers. We shall soon learn how to use such tables.

40. Definition of the Logarithm. The logarithm of a

number JV to a base b (b > 0, =£ 1) is the exponent x of

the power to which the base b must be raised to produce the

number JV.

That is, if

&*= N,
then

x ^lo&AT.

These two equations are of the highest importance in all work

concerning logarithms. One should keep in mind the fact

that if either of them is given, the other may always be

inferred.

The numbers forming the A. P. in tables 1, 2, and 3 of § 39

are the logarithms of the corresponding numbers in the G. P.,

the base being 2. From table 3 we have 2* = 4 V2 which says

log2 4V2 = |.

EXERCISES

1. When 3 is the base what are the logarithms of 9, 27, 3, 1, 81, |,

2. Why cannot 1 be used as the base of a system of logarithms ?

3. When 10 is the base what are the logarithms of 1, 10, 100, 1000 ?

4. Find the values of x which will satisfy each of the following

equalities

:

(a) log3 27 = x. (d) loga a = x. (g) log2 x = 6.

(6) \ogx 3 = 1. (e) loga l=x. (h) log32 z = |.

(c) log, 5=|. (/) log,
b\ = x. ('J) logo.001 x = 2.
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5. Find the value of each of the following expressions :

(a) log 2 16. (c) loge^ (e) log25 125.

(6) log343 49. (d) log2Vl6. (/) log2lfr.

41. The Three Fundamental Laws of Logarithms. From

the laws of exponents we derive the following fundamental

laws.

I. TJie logarithm of a product equals the sum of the logarithms

of its factors. Symbolically,

log6 MN = log6 M + log6 N.

Proof. Let log
6M= x, then bx = M. Let log

6 N= y, then

6 V = N. Hence we have MN = bx+y , or

log6 MN ax m+ y, i.e. log
6 MN= log,,M+ log

6 N.

II. Tlie logarithm of a quotient equals the logarithm of the

dividend minus the logarithm of the divisor. Symbolically,

log6^f= log6 M - log& N.
N

Proof. Let log6M= x, then b* = M. Let log6 N—y y
then

b'J m N. Hence we have M/N= b*'", or

M M
^ogb

- = x-y, i.e. \ogb^. = \ogbM - \og
b N.

III. The logarithm of the pth power of a number equals p
times the logarithm of the number. Symbolically

logfe Mp = p log6 M.

Proof. Let log6M= x, then bx = M. Raising both sides

to the pth power, we have b px = M v
. Therefore

log6Mp =px=p log, M.

Prom law III it follows that the logarithm of the real positive

nth root of a number is one nth of the logarithm of the number.
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2
EXERCISES

Given logi 2 = 0.3010, log10 3 = 0.4771, logio 7 = 0.8451, find the

of each of the followingg|rxpressions :

(a) logw 6. (/) logi 5.

[Hint: logio 2x3= log10 2 + logio 3.] [Hint: log10 5 = log10 y.J

(6) logio 21.0. (?) logiom
(c) logio 20.0. (h) logio Vl4.

(d) logio 0.03! (i) logio 49^_
(e) logio |. (i) logio V24.7&.

2. Given the same three logarithms as in Ex. 1, find the value of each

of the following expressions : r> *

/„\ u„ 4 x 5 x 7 ,,x •
' 5 x 3 x 20 f * , 2058

(a) IogI°^2T^- (6) logl°-^T^- N(c) loSl0

^i-
^(d) logio (2)*. (e) logic (3)8(5)«, (/) logio(23)Q).

<5>Logarithms to the Base 10. Logarithms to the base 10

are known as common or Briggian logarithms. Proceeding as

in § 39 we can show that 10 -3010 = 2, i.e. log10 2 = 0.3010. Let

ns multiply both members of the equation 1003010 == 2 by 10, 102
,

103
, etc. and notice the effect on the logarithm.

10o.3oio = 2 log10 2 = 0.3010

10 3010 = 20 log10 20 = 1.3010

102.3oio = 200 logL0 200 = 2.3010.

It should be clear from this example that the decimal part of

the logarithm (called the mantissa) of a number greater than 1

depends only on the succession of figures composing the num-

ber and not on the position of the decimal point, ^vhile the in-

tegral part (called the characteristic) depends simply on the

position of the decimal point. Hence it is only necessary to

tabulate the mantissas, for the characteristics can be found by

inspection as the following considerations show.

Since

10° = 1, lO^lO, 102 = 100, 103 = 1000, 104 = 10,000, etc.

we have logj 1 = 0, log10 10 = 1, log10 100 = 2,

log,o 1000 = 3, logM 10,000 = 4, etc.
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It follows that a number with one digit (=f= 0) at the' left of the

decimal point has for its logarithm a number equal to 4- a

decimal ; a number with two digits at the left of its decimal

point has for its logarithm a number equal to 1 -+- a decimal ; a

number with three digits at the left of the decimal point has

for its logarithm a number equal to 2 + a decimal, etc. We
conclude, therefore, that the characteristic of the common loga-

rithm of a number greater than 1 is one less than the number of

digits at the left of the decimal point.

Thus, logio 456.07 = 2.65903.

The case of a logarithm of a number less than 1 requires

special consideration. Taking the numerical example first con-

sidered above, if log10 2 =0.30103, we have log10 0.2=0.30103-1.

Why? This is a negative number, as it should be (since the

logarithms of numbers less than 1 are all negative, if the

base is greater than 1). But, if we were to carry out this

subtraction and write log10 0.2 = — 0.69897 (which would be

correct), it would change the mantissa, which is inconvenient.

Hence it is customary to write such a logarithm in the form

9.30103 - 10.

If there are n ciphers immediately following the decimal

point in a number less than 1, the characteristic is — n— 1.

For convenience, ifn< 10, we write this as (9 — n) — 10. TJiis

characteristic is written in two parts. The first part 9 — n is

ivritten at the left of the ma?itissa and the — 10 at the right.

In the sequel, unless the contrary is specifically stated, we
shall assume that all logarithms are to the base 10. We may
accordingly omit writing the base in the symbol log when there

is no danger of confusion. Thus, the equation log 2 = 0.30103

means log10 2 = 0.30103.

To make practical use of logarithms in computation it is

necessary to have a conveniently arranged table from which

we can find (a) the logarithm of a given number and (b) the

number corresponding to a given logarithm. The general

./ <*

)
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principles governing the use of tables will be explained by the

following examples [Tables, pp. 110, 111].

Example 1. Find log 42.7.

The characteristic is 1. In the column headed N (p. 110) we find 42

and if we follow this row across to the column headed 7, we read 6304,

which is the desired mantissa. Hence log 42.7 = 1.6304.

Example 2. Find log 0.03273.

The characteristic is 8 — 10. The mantissa cannot be found in our

table, but we can obtain it by a process called interpolation. We shall

assume that to a small change in the number there corresponds a propor-

tional change in the mantissa. Schematically we have

u '
^-' , Number Mantissa

difference = 10

. T3270 -> 5145"

L3273 -> ? 4 = difference

3280 —>» 5159J

Our desired mantissa is 5145 + ^-14 = 5149. Hence log 0.03273

= 8.5149 - 10.

Example 3. Find x when log x — 0.8485.

We cannot find this mantissa in our table, but we can find 8482 and

8488 which correspond to 7050 and 7060 respectively. Reversing the

process of example 2, we have schematically

Number Mantissa

"7050 <- 84821 _"

Difference = 10 ? <— 8485J 6 = difference

7060 <- 8488

Hence the significant figures in our required number are 7050 -f- 1 • 10

= 7055. Since the characteristic is the required number is 7.055.

EXERCISES

/^) Find the logarithms of the following numbers from the table on

ppYllO, 111 : 482, 26.4, 6.857, 9001, 0.5932, 0.08628, 0.00038.

2. Find the numbers corresponding to the following logarithms

:

2.W35, 0.3502, 7.9599 - 10, 9.5300 - 10, 3.6598, 1.0958.

43. Use of Logarithms in Computation. The way in

which logarithms may be used in computation will be suffi-

ciently explained in the following examples. A few devices

often necessary or at least desirable will be introduced. The
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latter are usually self-explanatory. Reference is made to

them here, in order that one may be sure to note them when

they arise. The use of logarithms in computation depends, of

course, on the fundamental properties derived in § 41.

Example 1. Find the value of 73.26 x 8.914 x 0.9214.

We find the logarithms of the factors, add them, and then find the

number corresponding to this logarithm. The work may be arranged as

follows

:

Numbers
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Form Filled In
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44. Cologarithms. Since — and M • —- are equivalent,

we may in a logarithmic computation, add the logarithm of

— instead of subtracting log N. The logarithm of -— is

called the cologarithm of N. Therefore

colog N = log 1/N= log 1 — log N= — log N,

since log 1 is zero.

We write cologarithms, like logarithms, with positive man-

tissas. Therefore the cologarithm is most easily found by sub-

tracting the logarithm from zero, written in the form 10.0000

-10.

Example. Find the colog 27.3.

10.0000 - 10

i log 27.3= 1.4362

colog 27.3= 8.5638-10

The cologarithm can be written down immediately by subtracting the

last significant figure of the logarithm from 10 and each of the others

from 9. If the logarithm is positive the cologarithm is negative and

hence — 10 is affixed.

There is no gain in using cologarithms when we have a quotient of two

numbers. There is an advantage when either the numerator or denomi-

nator contains two or more factors, for we can save an operation of addi

tion or subtraction. Let us solve Ex. 4, § 43, using cologarithms.

Example. Find the value of
763 '2 x 2L63

986.7

Numbers Log

763.2 .-> 2.8826

21.63 -> 1.3351

986.7 -> (colog) 7.0058 - 10

16.73 <- 1.2235

EXERCISES

Compute the value of each of the following expressions, using cologa-

rithms.

/?\ J2.80 x 37.6 /"T\ J 97.63 x 876.5

2876 x3.4 x 2.987
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3
5

5
V3275 ,

'

7 x 8 x 9 x 27.6 ^J
(2.01)*(1.76)»

4.
312

• 6 1293 x 12 7 x 5
610,27 N^(l + 2V3)(760 + 8)'

MISCELLANEOUS EXERCISES

1. What objections are there to the use of a negative number as the

base of a system of logarithms ?

2. Show that al°sax = x.

3 . Write each of the following expressions as a single term :

'a) log x + log y — log z. QpS^P log x — 2 log y + 3 log z.

XcpS log a — log (x + y) - \ log (ex + tf)'+ log Vw + x.

4} Solve for x the following equations :

§2 log2 £ + log2 4 = 1. (c) 2 logio x - 3 log 10 2 = 4.

log3 x - 3 log3 2 = 4. (d) 3 log2 x + 2 log2 3 = 1, -

/5. How many digits are there in 235 ? 3 142 ? 3 12 x 2» ?
^g|

y6. Which is the greater, (f£)
100 or 100 ?

/ 7> Find the value of each of the following expressions

:

(a% log6 35. ((py log3 34. (g) log7 245. (d) log13 26. -

8. Prove that logb a • loga 6 = 1.

9. Prove that

log„
a; + Vx2 ~- = 2 logo [x + Vx2 - 1].

« — Vx2 — 1

10. The velocity v in feet per second of a body that has fallen s feet

is given by the formula v = V64.3s.

What is the velocity acquired by the body if it falls 45 ft. 7 in. ?

/ 11. Solve for x and ?/ the equations ; 2X = 16v, x + 4 ?/ = 4.
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CHAPTER VI

LOGARITHMIC COMPUTATION

46. Logarithmic Computation. In the last chapter a few

examples of the use of logarithms in computation were given

in connection with a four-place table. Such a table suffices

for data and results accurate to four significant figures. When
greater accuracy is desired we use a five-,' six-, or seven-place

table.

No subject is better adapted to illustrate the use of logarith-

mic computation than the solution of triangles, which we shall

consider in some detail. Five-place tables and logarithmic

solutions ordinarily are used at the same time, since both tend

toward greater speed and accuracy.

46. Five-place Tables of Logarithms and Trigonometric

Functions. The use of a five-place table of logarithms differs

from that of a four-place table in the general use of so-called

" interpolation tables " or " tables of proportional parts," to

facilitate interpolation. Since the use of such tables of pro-

portional parts is fully explained in every good set of tables,

it is unnecessary to give such an explanation here. It will be

assumed that the student has made himself familiar with their

use.*

In" the logarithmic solution of a triangle we nearly always

need to find the logarithms of certain trigonometric functions.

For example, if the angles A and B and the side a are given,

we find the side b from the law of sines given in § 30,

, _ a sin B
^* sinA

* For this chapter, such a five-place tahle should be purchased. See, for

example, The Macmillan Tables, which contain all the tables mentioned

here with an explanation of their use.

61
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To use logarithms we should then have to find log a, log (sin B)

and log (sin A). With only a table of natural functions and a

table of logarithms at our disposal, we should have to find first

sin A, and then log sin A. For example, if A = 36° 20', we
would find sin 36° 20' = 0.59248, and from this would find log

sin 36° 20' = log 0.59248 m 9.77268 - 10. This double use of

tables has been made unnecessary by the direct tabulation of the

logarithms of the trigonometric functions in terms of the angles.

Such tables are called tables of logarithmic sines, logarithmic

cosines, etc. Their use is explained in any good set of tables.

The following exercises are for the purpose of familiarizing

the student with the use of such tables.

J EXERCISES

V. Find the following logarithms :
*

(a) log cos 27° 40'.5. (d) log ctn 86° 53'. 6.

(6) log tan 85° 20'.2. (e) log cos 87° 6'.2.

\}c) log sin 45° 40'. 7. (/) log cos 36° 53'. 3.

"k. Find A, when
(a) log sin A = 9.81632 - 10. (d) log sin A = 9.78332 - 10. •

(6) log cos A = 9.97970 - 10. (e) log ctn }A = 0.70352.

(c) log tan A = 0.45704. •(/) log tan \A = 9.94365 - 10.

VL Find Mf tan fl = 476 -32 x 89 - 710
.

\ 87325
^ 4. Given a triangle ABC, in which ZA = 32°, Z B = 27°, a = 5.2, find

b by use of logarithms.

47. The Logarithmic Solution of Triangles. The effective

use of logarithms in numerical computation depends largely on

a proper arrangement of the work. In order to secure this,

the arrangement should be carefully planned beforehand by

constructing a blank form, which is afterwards filled in. More-

over, a practical computation is not complete until its accuracy

has been checked. The blank form should provide also for a

good check. Most computers find it advantageous to arrange

* Five-place logarithms are properly used when angles are measured to the

nearest tenth of a minute. For accuracy to the nearest second, six places

should be used.
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the work in two columns, the one at the left containing the

given numbers and the computed results, the one on the right

containing the logarithms of the numbers each in the same

horizontal line with its number. The work should be so

arranged that every number or logarithm that appears is

properly labeled ; for it often happens that the same number

or logarithm is used several times in the same computation and

it should be possible to locate it at a glance when it is wanted.

The solution of triangles may be conveniently classified

under four cases

:

Case I. Given two angles and one side.

Case II. Given two sides and the angle opposite one of the

sides.

Case III. Given two sides and the included angle.

Case IV. Given the three sides.

In each case it is desirable (1) to draw a figure representing

the triangle to be solved with sufficient accuracy to serve as a

rough check on the results
; (2) to write out all the formulas

needed for the solution and the check
; (3) to prepare a blank

form for the logarithmic solution on the basis of these

formulas
; (4) to fill in the blank form and thus to complete

the solution.

We give a sample of a blank form under Case I ; the student

should prepare his own forms for the other cases.

48. Case I. Given Two Angles and One Side.

Example. Given: a=430.17, ^1=47° 13'.2, B=52° 29'.5. (Fig. 37.)

To find: C, 6, c.

Formulas

:

C = 180°-(A + B),

b=—2-sinB,
sin A

sin C.
sin A

Check (§ 36): ^=± = tan $(<?-*)
.^ J

c + b tanJ(C+B) *
Fig. 37
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The following is a convenient blank form for the logarithmic solu-

tion. The sign (+) indicates that the numbers should be added ; the

sign (— ) indicates that the number should be subtracted from the one

just above it.

A =
( + )* =
A+ B =

C =
a =

sin A =

Numbers

179° 60'.0

Logarithms

sin

a/sin A
sin B = sin

b = . .

a/sin A
sin C

c

c-b =
c+ b =

C-B=. .

C+ B= . .

tan | ( C — B) = tan

tan \{C + B)= tan

(-)

-») (+ )

-H (+)

Check

» (-)

•) (-)

(1)

(Logs (1) and (2)

. should be equal

. for check.)

"(2)

Filling in this blank form, we obtain the solution as follows.

Numbers
A= 47°13'.2

B= 52°29'.6

A+ B= 99°42'.8

179° 60'.0

Logarithms

0= 80°17'.2

a^= 430.17

sinA =sin47°13'.2

a/sin A
sin B = sin 52° 29'. 6

b = 464.94 Ans.

2.63364

(-) 9.86567 - 10

2.76797

( + ) 9.89943 - 10

2.66740
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a/sinA 2.76797

sin C = sin 80° 17'.2 (->) ( + ) 9.99373 - 10

c = 577.70 Ans. (<-) 2.76170

Check
c-b = 112.76 (->) 2.05215

c + b = 1042.64 (->) (-) 3.01813

9.03402 - 10

C-B = 27°47'.6

C+£ = 132°46'.8

tan|(C- i*)=tanl3°53'.8 (->) 9.39342-10
tan£(C + 5)= tan 66° 23'. 4 (->-) (-) 0.35942

9.03400 - 10

EXERCISES

Solve *ud ulUWft the following triangles ABC

:

. V. a = 372.5, ^4 = 25° 30', 5 = 47° 50'.

>* X c = 327.85, A = 110° 52'.9, 5 = 40° 31'.7. Ans. C = 28° 35'.4,

a = 640.11, 6 = 445.20.

3. a = 53.276, A = 108° 50'.0, C = 57° 13'.2.

^V b = 22.766, B = 141° 59M, C = 25° 12'.4.

5. b = 1000.0, B = 30° 30'.5, C = 50° 50'.8.

X, «' a = 257.7, J. = 47° 25', B = 32° 26'.

49. Case n. Given Two Sides and an Angle Opposite

One of Them.

If A, a, b are given, B may be determined from the relation

(1) AnB = bsmA -

a

If log sin B = 0, the triangle is a right triangle. Why ?

If log sin B > 0, the triangle is impossible. Why ?

If log sin B < 0, there are two possible values, Bu B2 of 5,

which are supplementary.

Hence there may be two solutions of the triangle. (See

Example.)

No confusion need arise from the various possibilities if the

corresponding figure is constructed and kept in mind.

It is desirable to go through the computation for log sin B
* A small discrepancy in the last figure need not cause concern. Why ?
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before making out the rest of the blank form, unless the data

obviously show what the conditions of the problem actually

Example L Given : A = 46° 22'.2, a = 1.4063, b = 2.1048. (Fig. 38.)

To find: B, C, c.

Formula : sin B = bsinA
.

Fig. 38

Numbers Logarithms

6 = 2.1048 (->) 0.32321

sin A = sin 46° 22' .2 (->) ( + ) 9.85962 -10
bsinA 0.18283

a =1.4063 (->) (-) 0.14808

sin B (-<-) 0.03475

Hence the triangle is impossible. Why ?

Example 2. Given : a = 73.221, b = 101.53, A = 40° 22'.3. (Fig. 39.)

To find : B, C, c.

Formula: sin£= &sin ^
.

Numbers Logarithms

b = 101.53 (->*) 2.00660

sin ^L= sin 40° 22'. 3 (->) ( + ) 9.81140 - 10

6sin^i

a = 73.221

sin i?

11.81800-10

(->*) (-) 1.86464

9.95336 - 10

The triangle is therefore possible and

has two solutions (as the figure shows)

.

We then proceed with the solution as

follows :

We find one value 2?i of B from

the value of log sin B. The other

value B2 of B is then given by B2 =
180° - Bx .
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Other formulas

:
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/:3. 6 = 4168.2,

4. a = 2.4621,

5. a = 421.6,

6. a = 461.5,

3179.8,

4.1347,

532.7,

c = 121.2,

B = 51°21'A.

B = 101° 37'.3.

A = 49° 21 '.8.

C=22°31'.6.

7. Find the areas of the triangles in Exs. 2-5.

50. Case III. Given Two Sides and the Included Angle.

Example. Given: a=214.17, 6=356.21,

B C = 62° 21 '.4. (Fig. 40.)

/N.
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51. Case
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EXERCISES

Solve and check each of the following triangles :

VI. a as 2.4169, b = 3.2417, c = 4.6293.

*%!.<*= 21.637, & = 10.429, c = 14.221.

5. a as 528.62, . 6 = 499.82, c = 321.77.

4. a = 2179.1, 6 = 3467.0, c = 5061.8.

V« a = 0.1214, & = 0.0961, c = 0.1573.

6. Find the areas of the triangles in Exs. 1-5.

7. Find the areas of the inscribed circles of the triangles in Exs. 1-5.

OTHER LOGARITHMIC COMPUTATIONS

52. Interest and Annuities.

Simple Interest.

Let the principal be represented by P
the interest on $ 1 for one year by r

the number of years by n

the amount of P for n years by An

Then the simple interest on P for a year is Pr

the amount of P for a year is P + Pr =P (1-4- r),

the simple interest on P for n years is Pnr

the amount of P for n years is A
n =P(1 + nr).

Example. How long will it take $210, at 4% simple interest, to

amount to $ 298.20 ?

An = P(l + nr) i.e. n = An ~ P
.

Pr

Number Logarithm

An - P = 88.20 ->- 1.9455

Pr= 8.40 -^ 0.9243

n = 10.5 -«— 1.0212 10 yr. 6 mo. ^Ins.

Compound Interest.

Let the original principal be P
and the rate of interest r

Then the amount A] at the end of the first year is

Ax = P-hPr=:P(l-\-r),
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the amount A2 at the end of the second year is

A 2 = A1 (l + r) = P(l + ry,

the amount at the end of n years is

4,«J»(l+r)".

If the interest is compounded semiannually, An
-— pf 1 +M ,

1+-) ,
if q times a year^ln=P( 1 + -

j

Since P in n years will amount to AH , it is evident that P at

the present time may be considered as equivalent in value to

A due at the end of n years. Hence P is called the present

worth of a given future sum A. Since

An = P(l + r)% P= An (1 + r)"\

Example. In how many years will one dollar double itself at 4 % in-

terest compounded annually ?

An = P(\ + r)- or log ^ = nlog(l + r).

. n = logA-log-P
log (1 + r)

Hence n = log2 - log 1 = 0,3010 = 17 .7 .

log (1.04) 0.0170

17 yr. 9 mo. Ans.

Annuities. An annuity is a fixed sum of money payable

at equal intervals of time.

To find the present worth of an annuity of A dollars pay-

able annually for n years, beginning one year hence, the rate

of interest being r and the number of years n.

Since the present worth of the first payment is A (1 + r)
_1

,

of the second A(l -f- r)
-2

, etc., the present worth of the whole

is

P=^[(l + r)-i+(l-f r)-*+ .- +(l + r)-*].

The quantity in the brackets is a G. P. whose ratio is (1 + r)~K

Summing, we have

l-(l + r)-i r\_ {1 + ryj
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If the annuity is perpetual, i.e. n is infinite, the formula for

A
present worth becomes P -— — •

Example. What should be paid for an annuity of $ 100 payable an-

nually for 20 years, money being worth 4 % per annum ?

p=Mh LLl.
0.04 L (1.04) 20

J

20 = 2.188.

Therefore P=— fl L-1 =2500
f
U^§1 =$1358, approximately.

0.04 L 2.188 J L2.188J '
FF J

(1.04)

By logarithms (1 .04) 20 - 2. 188.

53. Projectiles. Logarithms are used extensively in ballis-

tic computations. [Ballistics is the science of the motion of

a projectile.] The following is a very simple example of the

type of problem considered.

The time of flight of a projectile (in vacuum) is given by

the formula T=\- * where X is the horizontal range
* 9

in feet,
<f>

is the angle of departure, and g is the acceleration

due to gravity in feet per second per second \_g
— 32.2]. If it

is known that the range is 3000 yd. and that the angle of de-

parture is 30° 20', find the time of flight.
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3. A thermometer bulb at a temperature of 20° C. is exposed to the air

for 15 seconds, in which time the temperature drops 4 degrees. If the

law of cooling is given by the formula = doe-61 , where 6 is the final tem-

perature, #o the initial temperature, e the natural base of logarithms, and

t the time in seconds, find the value of b.

4. The stretch s of a brass wire when a weight m is hung at its free

end is given by the formula
j

8 =——

,

where m is the weight applied in grams, g = 980, I is the length of the

wire in centimeters, r is the radius of the wire in centimeters, and fc is a

constant. If m = 844.9 grams, I = 200.9 centimeters, r = 0.30 centi-

meter when s = 0.056, find k.

5. The crushing weight P in pounds of a wrought-iron column is given

by the formula ,73.55P= 299,600^—,
p

where d is the diameter in inches and I is the length in feet. What weight

will crush a wrought-iron column 10 feet long and 2.7 inches in diameter?

6. The number n of vibrations per second made by a stretched string

is given by the relation 2 rz-r-

n =
2TV^r'

where I is the length of the string in centimeters, M is the weight in

grams that stretches the string, m the weight in grams of one centimeter

of the string, and g = 980. Find n when M = 5467.9 grams, I = 78.5

centimeters, m = 0.0065 gram.

7. The time t of oscillation of a pendulum of length I centimeters is

given by the formula ,——

>(980

Find the time of oscillation of a pendulum 73.27 centimeters in length.

8. The weight w in grams of a cubic meter of aqueous vapor saturated

at 17° C. is given by the formula

= 1293 x 12.7 x 5

(1 + ^X760x8)*
Compute w.

54. The Logarithmic Scale. An arithmetic scale in which the

segments from the origin are proportional to the logarithms of 1, 2, 3, etc.,

is called a logarithmic scale. Such a scale is given in Fig. 42.

i I JIIIJ1
Fig. 42
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55. The Slide Rule. The slide rule consists of a rule along the

center of which a slip of the same material slides in a groove. Along the

Fig. 43

upper edge of the groove are engraved two logarithmic scales, A and B,

that are identical. Along the lower edge are also two identical logarithmic

scales, and D, in which the unit is twice that in scales A and B. Since

the segments represent the logarithms of the numbers found in the scale,

the operation of adding the segments is equivalent to multiplying the

f
1 2 £



CHAPTEK VII

TRIGONOMETRIC RELATIONS

56. Radian Measure. In certain kinds of work it is more

convenient in measuring angles to use, instead of the degree,

a unit called the radian. A radian is defined as the angle at

the center of a circle whose subtended arc is equal in length

to the radius of the circle (Fig. 45). Therefore, if an angle $

at the center of a circle of radius r units subtends an arc of

s units, the measure of 6 in radians is

r

Since the length of the whole circle is 2 -n-r, it follows that

— = 2tt radians = 360°,
r

or

(2) it radians = 180°.

Therefore,

180°

TT

1 radian = = 57° 17' 45" (approximately). FlG 45

It is important to note that the radian * as defined is a con-

stant angle, i.e. it is the same for all circles, and can therefore

be used as a unit of measure.

From relation (2) it follows that to convert radians into

degrees it is only necessary to multiply the number of radians

by 180/7T, wliile to convert degrees into radians we multiply

the number of degrees by tt/180. Thus 45° is tt/4 radians
;

7r/2 radians is 90°.

* The symbol r
is often used to denote radians. Thus 2r stands for 2

radians, ir
r for tt radians, etc. When the angle is expressed in terms of it (the

radian being the unit), it is customary to omit r
. Thus, when we refer to an

angle it, we mean an angle of it radians. When the word radian is omitted,

it should be mentally supplied in order to avoid the error of supposing ir

means 180. Here, as in geometry, t = 3.14159. . . .

75



76 PLANE TRIGONOMETRY [VII, § 57

57. The Length of Arc of a Circle. From relation (1),

§ 56, it follows that

s = r8.

That is (Fig. 46), if a central angle is measured

in radians, and if its intercepted arc and the

radius of the circle are measured in terms of

the same unit, then

length of arc = radius x central angle in radians.

r~ EXERCISES

1. Express the following angles in radians :

25°, 145°, 225°, 300°, 270°, 450°, 1150°.

-* 2. Express in degrees the following angles :

K 7 IT blT 5-TT— , — , , u 7T, .

4' 6 6 '4
* 3. A circle has a radius of 20 inches. How many radians are there in

an angle at the center subtended by an arc of 25 inches ? How many
degrees are there in this same angle ? Ans. |

r
;
71° 37' approx.

—i 4. Find the radius of a circle in which an arc 12 inches long subtends

an angle of 35°.

"""
5. The minute hand of a clock is 4 feet long. How far does its ex-

tremity move in 22 minutes ?

6. In how many hours is a point on the equator carried by the rotation

of the earth on its axis through a distance equal to the diameter of the earth?

7. A train is traveling at the rate of 10 miles per hour on a curve of

half a mile radius. Through what angle has it turned in one minute ?

8. A wheel 10 inches in diameter is belted to a wheel 3 inches in

diameter. If the first wheel rotates at the rate of 5 revolutions per \\g
minute, at what rate is the second rotating? How fast must the former

rotate in order to produce 6000 revolutions per minute in the latter ?

58. Angular Measurement in Artillery Service. The

divided circles by means of which the guns of the United States Field

Artillery are aimed are graduated neither in degrees nor in radians, but

in units called mils. The mil is defined as an angle subtended by an arc

of ^^-q of the circumference, and is therefore equal to

2tt 3.1416

6400 3200
0.00098175 =(0.001 - 0.00001825) radian.
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The mil is therefore approximately one thousandth of a radian.

(Hence its name.)*

Since (§57)
length of arc = radius x central angle in radians,

it follows that we have approximately

length of arc = x central angle in mils
;

1000

i.e. length of arc in yardsa (radius in thousands of yards) • (angle

in mils). The error here is about 2 %

.

Example 1. A battery occupies a front of 60 yd. If it is

at 5500 yd. range, what angle does it subtend (Fig. 47)? We
have, evidently,

angle =—= 11 mils.
5.5

Example 2. Indirect Fire, t A battery

posted with its right gun at G is to open fire on

a battery at a point T, distant 2000 yd. and in-

visible from G (Fig. 48). The officer directing

tfie fire takes post at a point B from which both

the target T and a church spire P, distant

3000 yd. from <?, are visible. B is 100 yd. at

the right of the line 6? T and 120 yd. at the

right of the line GP and the officer finds by
measurement that the angle PBT contains

3145 mils. In order to train the gun on the
P target the gunner must set off the angle PG T

on the sight of the piece and then move the gunFig. 48

* To give an idea of the value in mils of certain angles the following has

been taken from the Drill Regulations for Field Artillery (1911), p. 164:

" Hold the hand vertically, palm outward, arm fully extended to the front.

Then the angle subtended by the

width of thumb is 40 mils

width of first finger at second joint is . ; . . .40 mils

width of second finger at second joint is .... 40 mils

width of third finger at second joint is 35 mils

width of little finger at second joint is 30 mils

width of first, second, and third fingers at second joint is . 115 mils

These are average values."

, t The limits of the text preclude giving more than a single illustration of

the problems arising in artillery practice. For other problems the student is

referred to the Drill Regulations for Field Artillery (1911) , pp. 57, 61, 150-164

;

and to Andrews, Fundamentals of Military Service, pp. 153-159, from which
latter text the above example is taken.



78 PLANE TRIGONOMETRY [VII, § 58

until the spire P is visible through the sight. When this is effected, the

gun is aimed at T.

Let F and E be the feet of the perpendiculars from B to GT and GP
respectively, and let B T' and BP' be the parallels to G T and GP that

pass through B. Then, evidently, if the officer at B measures the angle

PBT, which would be used instead of angle PG T were the gun at B in-

stead of at G, and determines the angles TBT' = FTB and PBP1 =EPB,
he can find the angle PG T from the relation

PGT = PBT = PBT- TBV-PBP*.

Now tan FTB =— , tan EPB =—

.

TF PE

small compared with G T and GP respectively, the radian measure of the

angle is approximately equal to the tangent of the angle. Why ? Hence

we have
FB)FTB = tan FTB
GT

EPB = tan EPB =—
GP

approximately.

Therefore TBT' = FTB =— radians = 50 mils,
2000

PBP1 = EPB = i^- radians = 40 mils.
3000

Hence PGT = PBT - TBT' - PBP1

= 3145 - 50 - 40

= 3055 mils,

which is the angle to be set off on the sight of the gun.

Hence from the situation indicated in Fig. 48 we have the following

rule :

(1) Measure in mils the angle PBT from the aiming point P to the

target T as seen at B.

(2) Measure or estimate the offsets FB and EB in yards, the range

G T and the distance GP of the aiming point P in thousands of yards.

(3) Compute in mils the offset angles by means of the relations

TBT' = FTB,
PBP' = EPB,

TBT' = B̂
~-

GT

PBP' =— •

GP

(4) Then the angle of deflection PGT is equal to the angle PBT
diminished by the sum of the offset angles.
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EXERCISES

1. A battery occupies a front of 80 yd. It is at 5000 yd. range.

What angle does it subtend ?

2. In Fig. 48 suppose PBT = 3000 mils, FB = 200 yd., G T = 3000 yd.,

EB = 150 yd., GP = 4000 yd. Find the number of mils in PG T.

3. A battery at a point G is ordered to take a masked position and be

ready to fire on an indicated hostile battery at a point T whose range is

known to be 2100 yd. The battery commander finds an observing station

B, 200 yd. at the right and on the prolongation of the battery front, and

175 yd. at the right of PG. An aiming point P, 5900 yd. in the rear, is

found, and PBT is found to be 2600 mils. Find PG T.

4. A battery at a point G is to fire on an invisible object at a point T
whose range is known to be 2000 yd. A battery commander finds an

observing station B, 100 yd. at the right of G T and 150 yd. at the right

of GP. The aiming point P is 1500 yd. in front and to the left of G T.

The angle TBP contains 1200 mils. Find PG T.

59. The Sine Function. Let us trace in a general way the

variation of the function sin 6 as 6 increases from 0° to 360°.

For this purpose it will be convenient to think of the distance

r as constant, from which it follows that

the locus of P is a circle. When 6 = 0°, the

point P lies on the #-axis and hence the

ordinate is 0, i.e. sin 0° = 0/r = 0. As 6

increases to 90°, the ordinate increases

until 90° is reached, when it becomes equal

to r. Therefore, sin 90° = r/r = 1. As FlG 49

increases from 90° to 180°, the ordinate de-

creases until 180° is reached, when it becomes 0. Therefore

sin 180° = 0/r = As $ increases from 180° to 270°, the ordi-

nate of P continually decreases algebraically and reaches its

smallest algebraic value when = 270°. In this position the

ordinate is — r and sin 270° = — r/r = — 1. When enters

the fourth quadrant, the ordinate of P increases (algebraically)

until the angle reaches 360°, when the ordinate becomes 0.
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Hence, sin 360° = 0. It then appears that

:

as 6 increases from 0° to 90°, sin increases from to 1

;

as increases from 90° to 180°, sin 6 decreases from 1 to ;

as increases from 180° to 270°, sin decreases from to — 1

;

as 6 increases from 270° to 360°, sin 6 increases from — 1 to 0.

It is evident that the function sin 6 repeats its values in the

same order no matter how many times the point P moves

around the circle. We express this fact by saying that the

function sin 6 is periodic and has a period of 360°. In symbols

this is expressed by the equation

sin [8 + n • 360°] = sin 9,

where « is any positive or negative integer.

The variation of the function sin 6 is well shown by its

graph. To construct this graph proceed as follows : Take a

system of rectangular axes and construct a circle of unit radius

Fig. 50

with its center on the #-axis (Fig. 50). Let angle XM4P = 0.

Then the values of sin 6 for certain values of 6 are shown in

the unit circle as the ordinates of the end of the radius drawn

at an angle 6.

e
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that represents 60° erect one equal in length to sin 60°, etc.

Through the points 0, Pl9 P2 ,
— draw a smooth curve ; this

curve is the graph of the function sin 0.

If from any point P on this graph a perpendicular PQ is

drawn to the ic-axis, then QP represents the sine of the angle

represented by the segment OQ.

Since the function is periodic, the complete graph extends

indefinitely in both directions from the origin (Fig. 51).

1&*X

ilar to those60. The Cosine Function. By arguments s

used in the case of the sine function we may show that

:

as 8 increases from 0° to 90°, the cos 6 decreases from 1 to ;

as increases from 90° to 180°, the cos decreases from to — 1

;

as 6 increases from 180° to 270°, the cos increases from — 1 to ;

as 6 increases from 270° to 360°, the cos increases from to 1.

The graph of the function is readily constructed by a method

Fig. 52

similar to that used in the case of the sine function. This is

illustrated in Fig. 52.

The complete graph of the cosine function, like that of the

sine function, will extend indefinitely from the origin in both
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directions (Fig. 53). Moreover cos 6, like sin 6, is periodic and

has a period of 360°, i.e.

COS [6 4- 71 • 360°] as cos 6,

where n is any positive or negative integer.

Y

61. The Tangent Function. In order to trace the varia-

tion of the tangent function, consider a circle of unit radius

with^its center at the origin of a system of rectangular axes

(Fig. 54). Then construct the tangent to

this circle at the point M(l, 0) and let P
denote any point on this tangent line. If

angle MOP= 0, we have tan 6 = MP/OM
ae MP/1 = MP, i.e. the line MP represents

tan0.

Now when $ = 0°, MP is 0, i.e. tan 0° is 0.

As the angle 6 increases, tan 6 increases. As

approaches 90° as a limit, MP becomes

infinite, i.e. tan 6 becomes larger than any number whatever.

At 90° the tangent is undefined. It is sometimes convenient

to express this fact by writing

tan 90° =oo.

However we must remember that this is not a definition for

tan 90°, for oo is not a number. This is merely a short way of

saying that as approaches 90° tan becomes infinite and

that at 90° tan is undefined.

Thus far we have assumed to be an acute angle approach-

ing 90° as a limit. Now let us start with as an obtuse angle

Fig. 54
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and let it decrease towards 90° as a limit. In Fig. 55 the line

MP' (which is here negative in direction) represents tan 0.

Arguing precisely as we did before, it is

seen that as the angle approaches 90°

as a limit, tan 6 again increases in magni-

tude beyond all bounds, i.e. becomes infi-

nite, remaining, however, always negative.

We then have the following results.

(1) When is acute and increases to-

wards 90° as a limit, tan always remains

positive but becomes infinite. At 90° tan is undefined.

(2) When is obtuse and decreases towards 90° as a limit,

tan 6 always remains negative but becomes infinite. At 90°

tan 6 is undefined.

It is left as an exercise to finish tracing the variation of the

tangent function as 6 varies from 90° to 360°. Note that

tan 270°, like tan 90°, is undefined. In fact tan n • 90° is unde-

fined, if n is any odd integer.

Fig.

Fig. 56

To construct the graph of the function tan 6 we proceed

along lines similar to those used in constructing the graph of

sin 6 and cos 0. The following table together with Fig. 56

illustrates the method.
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e
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62. The Trigonometric Functions of — 9. Draw the angles

6 and — 0, where OP is the terminal line of and OP is the

terminal line of — 6. Figure 57 shows an angle 6 in each of

r

Fig 57

the four quadrants. We shall choose OP = OP and («, y) as

the coordinates of P and (x', y') as the coordinates of P'. In

all four figures

t! =» x, y' = - y, r' = r.

Hence

sin(-0) = ^ = :^ = -sin0,
r r

cos (— 6) m — == - = cos 6,
r' r

_?/ y

—

tan (- 0)= 2- = —a = - tan (9.

Also,

esc (— 6) = — esc 6 ; sec (— 0) = sec ; ctn (— 6)= — ctn 0.

The above results can be stated as follows : The functions of

— 6 equal numerically the like named functions of 6. The

algebraic sign, however, will be opposite except for the cosine

and secant.

Example, sin- 10°= -sin 10°, cos- 10°= cos 10°, tan-10°= -tan 10°.

63. The Trigonometric Functions of 180° + 6. Similarly,

the following relations hold :

sin (180° + 0)= — sin 0, esc (180° + 6) = - esc 0,

cos (180° + 6)= - cos 0, sec (180° + 6)= - sec 6,

tan (180° + 6)= tan 0, ctn (180° + 6)= ctn 0.

The proof is left as an exercise.
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64. Summary. An inspection of the results of §§ 27-28,

62-63 shows

:

1. Eachfmiction of — or 180° ± is equal in absolute value

(but not always in sign) to the same function of 0.

2. Each function of 90° — is equal in magnitude and in sign

to the corresponding co-function of 6.

These principles enable us to find the value of any function

of any angle in terms of a function of a positive acute angle

(not greater than 45° if desired) as the following examples

show.

Example 1. Reduce cos 200° to a function of an angle less than 45°.

Since 200° is in the third quadrant, cos 200° is negative. Hence
cos 200° = - cos 20°. Why ?

Example 2. Reduce tan 260° to a function of an angle less than 45°.

Since 260° is in the third quadrant, tan 260° is positive. Hence
tan 260° = tan 80° = ctn 10° (§ 27).

Example 3. Reduce sin (— 210°) to a function of a positive angle

less than 45°.

From § 62 we know sin — 210° = — sin 210°.

Considering the positive angle 210°, we have

sin - 210° = - sin 210° = - [ - sin 30°] = sin 30°.

EXERCISES

Reduce to a function of an angle not greater than 45° :

1. sin 163°. 5. esc 901°.

2. cos (-110°). *"+
i. ctn (-1215°). +

|

Ans. -sin 20°.
7> tan 840°.

-> 3. sec (-265°). 8. sin 510°.

4. tan 428°. tX— tv.
Eind without the use of tables the values of the following functions :

—>9. cos 570°. 11. tan 390°. 13. cos 150°.

10.' sin 330°. ^* 12. sin 420°. 14. tan 300°.

Reduce the following to functions of positive acute angles :

^15. sin 250°. T* 18. sec (-245°).

Ans. — sin 70° or — cos 20°. 19. Csc(— 321°).

16. cos 158°. 20. sin 269°.

17. tan (-389°).
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Prove the following relations from a figure :

(a) sin (90° + 0)= cos 0.
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CHAPTER VIII

TRIGONOMETRIC RELATIONS (Continued)

^5. Trigonometric Equations. An identity, as we have

seen (§ 26), is an equality between two expressions which is

satisfied for all values of the variables for which both expres-

sions are defined. If the equality is not satisfied for all

values of the variables for which each side is defined, it is

called a conditional equality, or simply an equation. Thus

1 — cos = is true only if = n • 360°, where n is an integer.

To solve a trigonometric equation, i.e. to find the values of

for which the equality is true, we usually proceed as follows.

1. Express all the trigonometric functions involved in terms

of one trigonometric function of the same angle.

2. Find the value (or values) of this function by ordinary

algebraic methods.

3. Eind the angles between 0° and 360° which correspond to

the values found. These angles are called particular solutions.

4. Give the general solution by adding n • 360°, where n is

any integer, to the particular solutions.

Example 1. Find 6 when sin 6 = $.

The particular solutions are 30° and 150°.

30° + n 360°, 150° + n • 360°.

The general solutions are

Example 2. Solve the equation tan 6 sin d — sin = 0.

Factoring the expression, we have sin (tan 6 — Y)= 0. Hence we
have sin = 0, or tan 6 — 1 = 0. Why ?

The particular solutions are therefore 0°, 180°, 45°, 225°. The genera!

solutions are n . 360°, 180° + n . 360°, 45° + n • 360°, 225° + n • 360°.

88
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the numerically smallest angle whose sine is equal to x. This func-

tion like arc sin x is denned only for those values of x for

which

The difference between arc sin x and Arc sin x is well illus-

trated by means of their graph. It is

evident that the graph ofy = arc sin x,

i.e. x = sin y is simply the sine curve

with the role of the x and y axes inter-

changed. (See Fig. 58.) Then for every

admissible value of x, there is an un-

limited number of values of y ; namely,

the ordinates of all the points P1} P2 , •-, in

which a line at a distance x and parallel

to the 2/-axis intersects the curve. The

single-valued function Arc sin x is repre-

sented by the part of the graph between

M and N,

Similarly arc cos x, defined as " an angle whose cosine is x,"

has an unlimited' number of values for

every admissible value of x(— 1 f^ x < 1)

We shall define the principal value Arc

cos x as the smallest positive angle whose

cosine is x. That is.

Fig. 58

^ Arc cos x <^ 7r.

Figure 59 represents the graph of y = arc

cos x, and the portion of this graph between

M and N represents Arc cos x.

Similarly we write x = tan y as y = arc

tan x, and in the same way we define the

symbols arc ctn x ; arc sec x ; arc esc x.

The principal values of all the inverse trigonometric functions

are given in the following table.
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7. Draw the graph of the functions :

(a) arc sin x. (c) arc tan x. (e) arc sec x.

(&-) arc cos x. (d) arc etna;. (/) arc esc x.

8. Find the value of cos (Arc tan f).

Hint. Let Arc tan f = 6. Then tan d = £ and we wish to find the

value of cos 6.

:

9. Find the values of cos (arc tan f) . !^V> •

TIC Find the value of the following expressions :

(a) sin (arc cos |). *"* -(c) cos (Arc cos T
5
^). (e) sin (Arc sin \).

(6) sin (arc sec 3). {$) sec (Arc esc 2). (/) tan (Arc tan 5)

.

11. Prove that Arc sin (2/5)= Arc tan (2/V21)

12. Find x when Arc cos (2 x2 - 2 x) = 2 tP/3. \ ^-

Find the values of the following expressions :

13. cos [90°— Arc tan f].

j£f 1^1

f
14. sec [90° — Arc sec 2].-

15. tan [90° - Arc sin T\].

67. Projection. Consider two directed lines p and q in a

plane, i.e. two lines on each of which, one of the directions

has been specified as positive (Fig. 60). Let A and B be

any two points on p and let A', B' be the points in which per-

Fig. 00

pendiculars to q through A and B, respectively, meet q. The

directed segment A'B' is called the projection of the directed seg-

ment AB on q and is denoted by

A'B' = proj
ff

AB.

In both figures AB is positive. In the first figure A'B' is posi

tive, while in the second figure it is negative.

As special cases of this definition we note the following

:
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1. If p and q are parallel and are directed in the same way,

we have
proj, AB = AB.

2. If p and q are parallel and are directed oppositely, we

have
proj

ff
AB = — AB.

3. If p is perpendicular to q, we have

proj, AB = 0.

It should be noted carefully that these propositions arc true

no matter how A and B are situated on p.

We may now prove the following important proposition :

If A and B are any two points on a directed line p, and q is

any directed line in the same plane with p, then we have both

in magnitude and sign

(1) projg AB = AB cos (pq)* = AB . cos (qp).

We note first from § 8 that (pq)+ (qp)= + n- 360°, where

n is any integer. Hence from § 64, cos (jxj) = cos (qp). Two
cases arise.

Jt

T22
Fig. 61

Case 1. Suppose AB is positive, i.e. it has the same direc-

tion as p.

Through A draw a line q^ parallel to q and with the same

direction. [It is evident that we may assume without loss of

generality that q is horizontal and is directed to the right.]

Let A'B' be the projection of AB on q and let BB' meet qx

in Bx . Then by the definition of the cosine we have

AB——± = cos (qip)= cos (pqi) = cos (qp) = cos
(pq)AB

* (pq) represents an angle through which p may be rotated in order to

make its direction coincide with the direction of q ; similarly for (qp).
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in magnitude and sign. Hence

AB± = AB cos (pq) = AB • cos (qp).

But ABX = A'B' = proj
3
AB.

Therefore proj
tf
AB = AB • cos (pp) = AB • cos (qp).

Case 2. Suppose AB is negative.

If AB is negative, BA is positive and we have from Case 1,

B'A! = BA • cos (pq)= BA • cos (qp).

Changing the signs of both members of this equation, we have

A'B' = AB • cos (})q)= AB • cos (qp).

The special cases 1, 2, 3, are obtained from formula (1)

by placing (qp) or (pq) equal to 0°, 180°, 90° respectively.

Theorem. If A, B, C are any three points in a plane, and I

is any directed line in the plane, the algebraic sum of the projec-

tions of the segments AB and- BC on I is equal to the projection

of the segment AC on I.

As a point traces out the path from A to B, and then from

B to C (Fig. 62), the projection of the point traces out the

segments from A' to B' and then from B'

to C. The tjjjft result of this motion is a

motion from A' to O which represents

the projection of AC, i.e.

A'B' + B'C = A'C.
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3. Prove by means of projection that in a triangle ABC
a—b cos C -f c cos B.

4. If projj. AB = 3 and proj„ AB = —4, find the length of AB.

5. A steamer is going northeast 20 miles per hour. Hots fast is it

going north ? going east ?

6. A 20 lb. block is sliding down a 15° incline. Find what force

acting directly up the plane will just hold the block, allowing ope half a

pound for friction.

7. Prove that if the sides of a polygon are projected in order upon any
given line, the sum of these projections is zero.

Fig. 63

The Addition Formulas. We may now derive formulas

for sin (a -f- /3), cos (a -f- ft), and tan (a + ft) in terms of func-

tions of a and
ft.

To this end

let P(x, y) be any point on the

terminal side of the angle a (the

initial side being along the posi-

tive end of the a>axis and the

vertex being at the origin). The

angle a + ft is then obtained by

rotating OP through an an^le

ft.
If P' (x', y') is the new Sta-

tion P after this rotation and

OP = OP' = r, we have sin (a -f- ft)
= £ , cos (a + ft)

= - , by
v r

definition. Our first problem is, therefore, to find x' and y' in

terms of x, y, and ft.

In the figure OMP is the new position of the triangle OMP
after rotating it about through the angle

ft.
Now,

x' = proj x OP' ss proj x OM' + proj x M'F

= xcosft + ycos(ft + ^\

= x cos ft
— y sin

ft.



96 PLANE TRIGONOMETRY [VIII, § 68

Similarly,

y> = proj, OP' = proj, OM' + proj
tf
M'F

= x cos(?-- ft\+ y cos ft

= x sin ft + y cos /?.

Hence, , , ~x y' x ,-+ n . V n
' sm (« + j3)=V-=- sr$/3+^ cos £

r r

= sin a cojr
[

or (1)
m

sin (a + P) = sin a co# p -f cos a sin p.

Also
coss(« + £) = ^- = -^osft-^ sin/?.

or (2) cos (a + p) = cos a cos p — sin a sin p.

Further we have

tan (a 4- B) = S *n
(a ~*~ ® = sni g cos ft + cos <* sin ft

cos (a 4-
ft) cos a cos ft

— sin a sin /J

Dividing numerator and denominator by cos a cos
ft,

we have

(3) • tan(a+B)= tan * + tan P.w v K;
1 - tan a tan p

Furthermore, by replacing
ft by —

ft in (1), (2), and (3), and

recalling that

sin (— ft) = — sin
ft, cos (— ft)

= cos
ft,

tan (— ft)
= — tan

ft,

we obtain
-^^fc_

(4) sin (a — P) = sin a cmf$ — cos a sin p,

(5) cos (a — P) = cos a cm$ +- sin a sin p,

(6) tan (a. - tt = tan o^ tan ptan (a - p) = —y — r
v r/

1 + t*n a tan p

EXERCISES

Expand the iollowing :

-*-±r sin (45° + «) = 3. cos (60° + a) = 5. sin (30° - 45°) =

—=«. tan (30° - 0) = 4. tan (45° + 60°) = . 6. cos (180° - 45°) =

7. What do the following formulas become if « = /3 ?

sin (« + (S)= sin a cos /3 + cos a sin p.
t (a A- 8 s)— tan a + tan P

.

sin (a — /3) = sin a cos /3 — cos a sin 0. * 1 — tan a tan /3

cos (a + /3) = cos a cos — sin a sin /S. . , _ q\ _ tan a — tan g (

cos (a — /3) = cos a cos p + sin a sin j8. 1 + tan a tan /3
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8. Complete the following formulas :

sin 2 a cos a + cos 2 a sin a — tan 2 a + tan a _

sin 3 a cos a — cos 3 a sin a = 1 — tan 2 a tan a

-^* Prove sin 75° = V^ + 1
, cos 75° = V^ ~ 1

, tan75° = Vg
+ 1

-

2V2 2V2 V3-1
10. Given tan a = f , sin ft = T

5
^, and a and ft both positive acute angles,

find the value of tan (a + ft); shr(a~— ft); cos (a + ft); tan (a — ft).

,-. »r1 1. Prove that

(a) cos (60° + a) + sin (30° + a) = cos a.

* ( 6) sin (60° + 0)- sin (60° - 6) - sin 0.

(c) cos (30° + 0)- cos (30° - 0)= - sin 6.

(d) cos (45° + 6) + cos (45° - 0) = V2 • cos 0.

> (e) sin
1 a + -

)
+ sin

(
a — —

j
= sin a.

(/) cos ( a + - ) + cos (a — -) = V3 • cos a.

~*—12. By using the functions of 60° and 30° find the value of sin 90°
;

cos 90°.

13. Find in radical form the value of sin 15°
; cos 15°

; tan 15°
;

sin 105° ; cos 105°
; tan 105°.

14. If tan a = |, sin ft = T
5
T , and a is in the third quadrant while ft is

in the second, find sin (a ± ft) ; cos (a ± ft) ; tan (a ± ft).

Prove the following identities :

<^"~"

15
sin (a + ft) _ tan a + tan ft _ 16

sin 2 a , cos 2 a _ sm 3 a
sin (a — ft) tana — tan ft sec a esc a

17
tana -tan (a -ft) = tan ^ 19. ( a) sin ( 180

o _ 9) - sin $m

1 + tan a tan (a— ft) (6) cos (180° - 6) = - cos 0.

x 18. tan(0±45°) + ctn(0T45°)=O. (c) tan (180° - 6) = - tan 0.

20. cos (a -f ft) cos (a — ft) = cos2 a — sin2 ft.

21. sin (a + ft) sin (a — ft) = sin2 a - sin2
ft.

22. ctn(« + /9) = ctnttctn g- 1
. 23. ctn (a - ft) =

Ctn " ctn ** + *
.

ctna + ctnft ctnft — etna

24. Prove Arc tan £ + Arc tan | = ?r/4.

[Hint : Let Arc tan \ = x and Arc tan \ = y. Then we wish to prove

x + y = ir/4, which is true since tan (x + y)= 1.]

25. Prove Arc sin a + Arc cos a = - if < a < 1.

p

26. Prove Arc sin T
*
7 -f Arc sin | = Arc sin ||.

i H
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27. Prove Arc tan 2 + Arc tan £ as ir/2.

28. Prove Arc cos § + Arc cos (— T
5
y) = Arc cos (— f|).

29. Prove Arc tan T
8
5 + Arc tan f = Arc tan f£.

-30. Find the value of sin [Arc sin | + Arc ctnf ].

- 31. Find the value of sin [Arc sin a + Arc sin 6] if < a < 1, < b < 1.

32. Expand sin (x + y + z) ; cos(x + y + z).

[Hint : x + y + z =(x + y)+ z.]

33. The area i of a triangle was computed from the formula

A = I ab sin 0. If an error c was made in measuring the angle 0, show that

the corrected area A' is given by the relation.^.' = A(cos e + sin e ctn 6).

69. Functions of Double Angles. In this and the follow-

ing articles (§§ 69-71) we shall derive from the addition

formulas a variety of other relations which are serviceable in

transforming trigonometric expressions. Since the formulas

for sin (a + fi) and cos (a + /?) are true for all angles a and (3,

they will be true when /? = a. Putting /3 = a, we obtain

(1) sin 2 a = 2 sin a cos a,

(2) cos 2 a = cos2 a — sin2 a.

Since sin2 a + cos2 a — 1, we have also

(3) cos 2 a = 1 - 2 sin2 a

(4) =2cos2 a-l.

Similarly the formula for tan (a + ft) (which is true for all

angles a, ft,
and a+ft which have tangents) becomes, when ft=a,

(5) tan2q= 2tana
,v ; l-tan2 a

which holds for every angle for which both members are denned.

The above formulas should be learned in words. For ex-

ample, formula (1) states that the sine of any angle equals

twice the sine of half the angle times the cosine of half the

angle. Thus sin6^ = 2 sin3« cos3^,

2 tan 2 x
tan 4 x —

l-tan2 2x'

cos x = cos2 - — sin2 ->



VIII, § 70] TRIGONOMETRIC RELATIONS 99

70. Functions of Half Angles. From (3), § 69, we have

Therefore
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10. Express tan 4 a in terms of tan 2 a.

11. Express tan 4 a in terms of cos 8 a.

12. Express sin x in terms of functions of x/2.

13. Explain why the formulas for sin x and cos x in terms of functions

of 2 x have a double sign.

14. From the functions of 30° find those of 60°.

15. From the functions of 60° find those of 30°.

16. From the functions of 30° find those of 15°.

17. From the functions of 15° find those of 7°. 5.

18. Find the functions of 2 a if sin a = $ and a is in the second

quadrant.

19. Find the functions of a/2 if cos a =— 0.6 and a is in the third

quadrant, positive, and less than 360°.

20. Express sin 3 a in terms of sin a. [Hint : 3a = 2a + a.]

21. From the value of cos 45° find the functions of 22°. 5.

22. Given sin a = — and a in the second quadrant. Find the values of

(a) sin 2 a. (c) cos 2 a. (e) tan 2 a.

(6) sin". (d) cos?. (/) tan|.

23. If tan 2 a = | find sin a, cos a, tan a if a is an angle in the third

quadrant.

Prove the following identities :

24.
1 + C0*«=cto& 27.

l-cos2fl + sin2fl =tan
. sin a 2 . . 1 + cos 2 + sin 2

25.

26.

Tsin— cos-] =1 — sin0. 28. sin- + cos — = ± Vl + sina.
L.2 2J 22
cos2 + cos0 4-l „ ctn,,

j 29 Be0 a + tan«=ten^ + ^Vsin20 + sin0 \4 2/

30. 2 Arc cos a; = Arc cos (2 x2— 1).

31. 2 Arc cosx = Arc sin (2 xVl — x2
).

32. tan [2 Arc tanx] = ^^-. 34. tan [2 Arc sec x] = ± 2 '

1 - x2 J
2 - x2

33. cos [2 Arc tan x] = — x
• /35^ *os (2 Arc sin a) = 1 — 2 a2

.

1 +x2

Solve the following equations

36. cos 2 x + 5 sin x = 3. 40. sin2 2 x — sin2 x ss f

.

37. cos2x — sinx = \. 41. sin2x = 2cosx.

38. sin 2 x cos x = sin x. 42. 2 sin2 2 x = 1 — cos2x.

39. 2sin2 x + sin2 2x = 2. 43. ctnx — csc2x — 1.
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44. A flagpole 50 ft. high stands on a tower 49 ft. high. At what dis-

tance from the foot of the tower will the flagpole and the tower subtend

equal angles ?

45. The dial of a town clock h^s a diameter
(j|f JO ft. and its center is

100 ft. above the ground. At
1

what' distance from the foot of the tower

will the dial be

must be as large

most plainly viqbie f] £rhe ajn^'fubWr-ded by the dial

as possible.]* ° ' •••• '

71. Product Formulas. From § 68 we have

sin (a-\- (3) = sin a cos /? -f cos a sin /3,

sin (a — /?) = sin a cos /? — cos a sin /?.

Adding, we get

(1) sin (a + p) + sin (a — /?) = 2 sin a cos /3.

Subtracting, we have

(2) sin (a + ft)
— sin (« — p) = 2 cos a sin 0.

Now, if we let a -f- /? = P and a — ft
= Q,

thell « =^, =Z^$.

Therefore formulas (1) and (2) become

P -+- O P
sin P + sin Q = 2 sin ^ v cos —

2 2

Pi Q p
sin P — sin Q = 2 cos ——* sin —

2

Similarly, starting with cos (« + /?) and cos (a — /?) and per-

forming the same operations, the following formulas result

:

P 4- O P — O
cos P + cos Q = 2 cos——-*- cos——i-,

A A

cos P — cos Q = — 2 sin
J~

v sin——^.
2 2

y^. In words

:

the sum of two sines =
twice sin (half sum) times cos (half difference),

the difference of two sines =
twice cos (half sum) times sin (half difference),*

* The difference is taken, first angle minus the second.
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the sum of two cosines =
twice cos (half sum) times cos (half difference),

the difference of two cosines,=
minus twice sin (half sum) times sin (half difference).*

Example 1. -Prove that
' a

f

coB8a ; + co8:a
?=ctn j a

,

sin 3 x + sin x

for all angles for which both members are defined.

cos 3 x + cos x_ 2 cos ^(3 x 4- x) cos |(3 x — x) _ cos 2 x _ . 9
sin 3 x + sin x 2 sin £(3 x + x) cos \ (3 x — x)

~"
sin 2 x

~~

Example 2. Reduce sin 4 x 4- cos 2 x to the form of a product.

We may write this as sin 4 x 4- sin (90° — 2x), which is equal to

2 sin
Ix + W-Z* cos

tx-W + az
2 sin (45

„ + x) cos (3 x _ 45„
}

_

EXERCISES

Reduce to a product

:

1. sin 4 — sin 2 0. 4. cos 2 + sin 2 0. 7. cos 3 x + sin 5 x.

2. cos + cos 3 0. 5. cos 3 — cos 6 0. 8. sin 20° — sin 60°.

3. cos 6 + cos 2 0. 6. sin (x -f Ax)— sin x.

Show that

9. sin 20° + sin 40° = cos 10°.
12

sin 15° 4- sin 75° _ _ 6QO

10. cos 50° 4- cos 70° = cos 10°.
' sin 15° - sin 75°

~

11.
sin75°- sinl5° = tan 30°. 13.

sin3 0-sin5 = _^ 4 ,
cos 75° 4- cos 15° cos 3 — cos 5

Prove the following identities : , ^ "

"^ sm~$TT4r'Slfi~3 ft _ g^fl"
15

sin a + sin ft _ tan \ (a + ft)

cos 3 a — cos 4 a 2 ' sin a — sin ft tan £ (a — ft)

. .. cos a 4- 2 cos 3 a 4- cos 5 a cos 3 a
id. = •

cos 3 a. + 2 cos 5 a 4- cos 7 a cos 5 a

-_ cos a— cos ft _ _ tan ^(#4- ft) lg
sin (n — 2) 4- sin nd _ .

cos «4- cos ft ctn£(a — ft)
' cos (n — 2) — cos nd

Solve the following equations :

19. cos 4- cos 50 = cos 30. 22. sin 4 — sin 2 = cos 3 0.

20. sin 4- sin 5 = sin 3 0. 23. cos 7 — cos = — sin 4

21. sin 3 6 + sin 7 = sin 5 0.

*The difference is taken, first angle minus the second.

I
. OW^&
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MISCELLANEOUS EXERCISES

1. Reduce to radians 65°, - 135°, - 300°, 20°.

2. Reduce to degrees 7r, 3 ?r, — 2 w, 4 v radians.

3. Find sin (a — /3) and cos (a + /S) when it is given that a and /3 are

positiye and acute and tan a = f and sec /3 = *£.

4. Find tan (a + /S) and tan (a — /3) when it is given that tan a = \

and tan /S = |.

5. Prove that sin 4 a = 4 sin a cos a — 8 sin3 a cos a.

6. Given sin =—-
y
and in the second quadrant. Find sin 2

V5
cos 2 0, tan 2 0.

Prove the following identities :

. 7 . sin2«= 2tan " 9. sec2« csc2a

1 + tan2 a esc2 a — 2

8. cos2 (, = 1 - tan2 ^. 10. tan«= sin2a
1 + tan2 a 1 + cos 2 a

s~ 11. sin (a + /S) cos /3 — cos (a + /3) sin = sin a.

^-£ll. sin 2 a + sin 2 j3 + sin 2 7 = 4 sin a sin sin 7, if a + /S + 7 = 180°.

1 + tan - c*
, q.

cos a 2 _d J <-~ ^
' l-sta«"l_ta„!' "= r T\^P &

— \_ ten -x. 4 ^_ 1

.
A *• % <u*J~^&. ^ _ 1

4^»\A 5i_ .2-
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116 Four Place Trigonometric Functions
[Characteristics of Logarithms omitted— determine by the usual rule from the value]

Radians
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118 Values and Logarithms of Haversines

[Characteristics of Logarithms omitted— determine by rule from the value]

60
61
62
63
64

65
66
67
68
69

70
71
72
78
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99

100
101
102
103
104

105
106
107
108
109

110
111
112
113
114

115
116
117
118
119

0'

Value Log10

.2500

.2576

.2653

.2730

.2808

.2887

.2966

.3046

.3127

.3208

.3290

.3372

.3455

.3538

.3622

.3706

.3790

.3875

.3960

.4046

.4132

.4218

.4304

.4391

.4477

.4564

.4651

.4738

.4826

.4913

.5000

.5087

.5174

.5262

.5349

.5436

.5523

.5609

.5696

.5782

.5868

.5954

.6040

.6125

.6210

.6294

.6378

.6462

.6545

.6628

.6710

.6792

.6873

.6954

.7034

.7113

.7192

.7270

.7347

.7424

.3979

.4109

.4237

.4362

.4484

.4604

.4722

.4838

.4951

.5063

.5172

.5279

.5384

.5488

.5589

.5689

.5787

.5883

.5977

.6070

.6161

.6251

.6339

.6425

.6510

.6594

.6676

.6756

.6835

.6913

.6990

.7065

.7139

.7211

.7283

.7353

.7421

.7489

.7556

.7621

.7685

.7748

.7810

.7871

.7931

.7989

.8047

.8104

.8159

.8214

.8267

.8320

.8371

.8422

.8472

.8521

.8568

.8615

.8661

.8706

10'

Value Log10

.2513

.2589

.2665

.2743

.2821

.2900

.2980

.3060

.3140

.3222

.3304

.3386

.3469

.3552

.3636

.3720

.3805

.3889

.3975

.4060

.4146

.4232

.4319

.4405

.4492

.4579

.4753

.4840

.4937

.5015

.5102

.5189

.5276

.5363

.5450

.5537

.5624

.5710

.5797

.5883

.5968

.6054

.6139

.6224

.6308

.6392

.6476

.6559

.6642

.6724

.6805

.6887

.6967

.7047

.7126

.7205

.7283

.7360

.7437

.4001

.4131

.4258

.4382

.4504

.4624

.4742

.4857

.4970

.5081

.5190

.5297

.5402

.5505

.5606

.5705

.5803

.5899

.5993

.6085

.6176

.6266

.6353

.6440

.6524

.6607

.6689

.6770

.6848

.6926

.7002

.7077

.7151

.7223

.7294

.7364

.7433

.7500

.7567

.7632

.7696

.7759

.7820

.7881

.7940

.7999

.8056

.8113

.8168

.8223

.8276

.8329

.8380

.8430

.8480

.8529

.8576

.8623

.8669

.8714

20'

Value Logt

30'

Value Log 10

.2525 .4023

.2601 .4152

.2678 .4279

.2756 .4403

.2834 .4524

.2913 .4644

.2993 .4761

.3073 .4876

.3154 .4989

.3235 .5099

.3317 .5208

.3400 .5314

.3483 .5419

.3566 .5522

.3650 .5623

.3734 .5722

.3819 .5819

.3904 .5915

.3989 .6009

.4075 .6101

.4160 .6191

.4247 .6280

.4333 .6368

.4420 .6454

.4506 .6538

.4593 .6621

.4680 .6703

.4767 .6783

.4855 .6862

.4942 .6939

.5029 .7015

.5116 .7090

.5204 .7163

.5291 .7235

.5378 .7306

.5465

.5552

.5638

.5725

.5811

.5897

.5983

.6068

.6153

.6238

.6322

.6406

.6490

.6573

.6655

.6737

.6819

.6900
,6980
.7060

.7139

.7218

.7296

.7373

.7449

.7376

.7444

.7511

.7577

.7642

.7706

.7769

.7830

.7891

.7950

.8009

.8122

.8177

.8232

.8285

.8337

.8388

.8439

.8488

.8537

.8584

.8631

.8676

.8721

.2538

.2614

.2691

.2769

.2847

.2927

.3006

.3087

.3167

.3249

.3331

.3413

.3496

.3580

.3664

.3748

.3833

.3918

.4003

.4089

.4175

.4261

.4347

.4434

.4521

.4608

.4695

.4782

.4869

.4956

.5044

.5131

.5218

.5305

.5392

.5479

.5566

.5653

.5739

.5825

.5911

.5997

.6082

.6167

.6252

.6336

.6420

.6504

.6587

.6669

.6751

.6833

.6913

.6994

.7073

.7153

.7231

.7309

.7386

.7462

.4045

.4173

.4300

.4423

.4545

.4664

.4780

.4895

.5007

.5117

.5226

.5332

.5436

.5539

.5639

.5738

.5835

.5930

.6024

.6116

.6206

.6295

.6382

.6468

.6552

.6635

.6716

.6796

.6875

.6952

.7027

.7102

.7175

.7247

.7318

.7387

.7455

.7523

.7588

.7653

.7717

.7779

.7841

.7901

.7960

.8018

.8075

.8131

.8187

.8241

.8294

.8346

.8397

.8447

.8496

.8545

.8592

.8638

.8684

.8729

40'

Value Log 10

.2551

.2627

.2704

.2782

.2861

.2940

.3020

.3100

.3181

.3263

.3345

.3427

.3510

.3594

.3678

.3762

.3847

.3932

.4017

.4103

.4189

.4275

.4362

.4448

.4535

.4622

.4709

.4796

.4884

.4971

.5058

.5145

.5233

.5320

.5407

.5494

.5580

.5667

.5753

.5840

.5925

.6011

.6096

.6181

.6266

.6350

.6434

.6517

.6600

.6683

.6765

.6846

.6927

.7007

.7087

.7166

.7244

.7322

.7399

.7475

.4066

.4195

.4320

.4444

.4565

.4683

.4799

.4914

.5026

.5136

.524*4

.5349

.5454

.5556

.5656

.5754

.5851

.5946

.6039

.6131

.6221

.6310

.6397

.6482

.6566

.6649

.6730

.6809

.6887

.6964

.7040

.7114

.7187

.7259

.7329

.7399

.7467

.7534

.7599

.7664

.7727

.7790

.7851

.7911

.7970

.8028

.8085

.8141

.8196

.8250

.8302

.8354

.8405

.8455

.8504

.8553

.8600

.8646

.8691

.8736

50'

Value Log10

.2563

.2640

.2717

.2795

.2874

.2953

.3033

.3113

.3195

.3276

.3358

.3441

.3524

.3608

.3692

.3776

.3861

.3946

.4032

.4117

.4203

.4290

.4376

.4463

.4550

.4637

.4724

.4811

.4898

.4985

.5073

.5160

.5247

.5334

.5421

.5508

.5595

.5682

.5768

.5854

.5940

.6025

.6111

.6195

.6280

.6364

.6448

.6531

.6614

.6696

.6778

.6860

.6940

.7020

.7100

.7179

.7257

.7335

.7411

.7487

.4088

.4216

.4341

.4464

.4584

.4703

.4819

.4932

.5044

.5154

.5261

.5367

.5471

.5572

.5672

.5771

.5867

.5962

.6055

.6146

.6236

.6324

.6411

.6496

.6580

.6662

.6743

.6822

.6900

.6977

.7052

.7126

.7199

.7271

.7341

.7410

.7478

.7545

.7610

.7674

.7738

.7800

.7861

.7921

.7980

.8037

.8094

.8150

.8205

.8258

.8311

.8363

.8414

.8464

.8513

.8561

.8608

.8654

.8699

.8743



Values and Logarithms of Haversines

[Characteristics of Logarithms omitted— determine by rule from the value]
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INDEX

Abscissa, 6.

Absolute value, of a directed quan-
tity, 7.

Addition, of angles, 9; formulas in

trigonometry, 95.

Angle, definition of, 7; directed, 7;

measurement of, 8 ; addition and
subtraction of, 9 ; functions of, 2 ;

of elevation and depression, 16;

of triangle, 48 ; in artillery service,

76.

Annuities, 70.

Arc of a circle, 76.

Artillery service, use of angles in, 76.

Axes, of coordinates, 5.

Briggian logarithms, 54.

Characteristic of a logarithm, 54.

Cologarithms, 59.

Common logarithms, 54.

Compass, Mariner's, 29.

Computation, numerical,

logarithmic, 61 ff.

Coordinates in a plane, 5.

Cosecant, 32.

Cosine, definition of, 12

:

of, 81 ;
graph of, 82

;

40.

Cotangent, definition of, 32
Course, 29.

Coversed sine, 32.

18, 24

; variation

law of —s,

Dead reckoning, 30.

Departure, 29.

Difference in latitude, 29 ; in longi-

tude, 30.

Directed, angles, 7 ;
quantities, 6

segments, 7.

Distance, 29.

Elements of a triangle, 1.

Function, definition of, 3 ; representa-

tion of, 32 ; trigonometric, 12 ff .,

58.

Graph of trigonometric functions,

80, 82, 83.

Haversine, definition of, 32; solu-

tion of triangles by, 48 ; tables of,

117-9.

Identities, trigonometric, 35.

Initial position, 7.

Interest, 70.

Interpolation, 22.

Knot, 29.

Latitude, difference in, 29 ; middle,

30.

Law, of sines, 40 ; cosines, 40 ; of

tangents, 47.

Logarithm, definition of, 52 ; inven-

tion of, 50 ; laws of, 53 ; systems

of, 54 ; characteristic and man-
tissa of, 54 ; use of tables of, 56

;

tables of, 110-16.

Logarithmic scale, 73.

Magnitude, 6.

Mantissa, 54.

Mariner's compass, 29.

Middle latitude, 30.

Mil, 76.

Napier, J., 50.

Nautical mile, 29.

Navigation, 28 ff

.

Negative angle, definition of, 7;
functions of, 85.

Ordinate, 6.
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Parts of a triangle, 1.

Period of trigonometric functions,

80, 82, 84.

Plane sailing, 28.

Plane trigonometry, 1.

Product formulas, 101.

Projectile, 72.

Projection, 92.

Quadrant, 6.

Radian, 75.

Radius of inscribed circle, 46.

Rotation, angles of, 8.

Rounded numbers, 25.

Scale, logarithmic, 73.

Secant, definition of, 32.

Significant figures, 25.

Sine, definition of, 12 ; variation of,

79
;
graph of, 80 ; law of s, 40.

Slide rule, 74.

Solution of triangles, 1, 16 ff., 41 ft*.,

48, 62 ff.

Spherical trigonometry, 1.

Tables, of squares, 27, 106-7; of

haversines, 117-9; of logarithms,
110-11 ; of trigonometric func-
tions, 112-19.

Tangent, definition of, 3, 12 ; variation
of, 82 ;

graph of, 83 ; line repre-

sentation of, 83 ; law of s, 47.

Triangle, area of, 45 ; angles of, 48

;

solution of, 1, 16 ff., 41 ff., 48, 62.

Trigonometric equations, 88.

Trigonometric functions, definitions

of, 3, 12, 15, 32 ;
graphs of, 80, 82,

83 ; computation of, 18 ff
. ;

periods

of, 80, 82, 84; inverse, 87; formulas,

15, 32, 34, 96 ff. ; logarithms of,

61 ; tables of, 21, 112-19.

Versed sine, defined, 32.
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ELEMENTARY MATHEMATICAL
ANALYSIS

BY

JOHN WESLEY YOUNG
Professor of Mathematics in Dartmouth College

And FRANK MILLET MORGAN
Assistant Professor of Mathematics in Dartmouth College

Edited by Earle Raymond Hedrick, Professor of Mathematics

in the University of Missouri

77/., Cloth, i2tno, $2.60

1
. A textbook for the freshman year in colleges, universities, and

technical schools, giving a unified treatment of the essentials of

trigonometry, college algebra, and analytic geometry, and intro-

ducing the student to the fundamental conceptions of calculus.

The various subjects are unified by the great centralizing

theme of functionality so that each subject, without losing its

fundamental character, is shown clearly in its relationship to the

others, and to mathematics as a whole.

More emphasis is placed on insight and understanding of

fundamental conceptions and modes of thought ; less emphasis

on algebraic technique and facility of manipulation. Due recog-

nition is given to the cultural motive for the study of mathe-

matics and to the disciplinary value.

The text presupposes only the usual entrance requirements in

elementary algebra and plane geometry.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



Trigonometry

By ALFRED MONROE KENYON
Professor of Mathematics, Purdue University

and

LOUIS INGOLD
Assistant Professor of Mathematics, the University of Missouri

Edited by Earle Raymond Hedrick

With Brief Tables, 8vo, $1.20
With Complete Tables, 8vo, $1.50

The book contains a minimum of purely theoretical matter. Its entire organization is

intended to give a clear view of the meaning and the immediate usefulness of Trigonometry.

The proofs, however, are in a form that will not require essential revision in the courses that

follow. . . .

The number of exercises is very large, and the traditional monotony is broken by illus-

trations from a variety of topics. Here, as well as in the text, the attempt is often made to

lead the student to think for himself by giving suggestions rather than completed solutions

or demonstrations.

The text proper is short; what is there gained in space is used to make the tables very

complete and usable. Attention is called particularly to the complete and handily arranged

table of squares, square roots, cubes, etc. ; by its use the Pythagorean theorem and the Cosine

Law become practicable for actual computation. The use of the slide rule and of four-place

tables is encouraged for problems that do not demand extreme accuracy.

Analytic Geometry and Principles of Algebra

By ALEXANDER ZIWET
Professor of Mathematics, the University of Michigan

and

LOUIS ALLEN HOPKINS
Instructor in Mathematics, the University of Michigan

Edited by Earle Raymond Hedrick

Cloth, i2tno, $1.75

This work combines with analytic geometry a number of topics traditionally treated in

college algebra that depend upon or are closely associated with geometric sensation. Through
this combination it becomes possible to show the student more directly the meaning and the

usefulness of these subjects.

The treatment of solid analytic geometry follows the more usual lines. But, in view of the

application to mechanics, the idea of the vector is given some prominence; and the represen-

tation of a function of two variables by contour lines as well as by a surface in space is ex-

plained and illustrated by practical examples.

The exercises have been selected with great care in order not only to furnish sufficient

material for practice in algebraic work but also to stimulate independent thinking and to

point out the applications of the theory to concrete problems. The number of exercises is

sufficient to allow the instructor to make a choice.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



A Short Course in Mathematics

By R. E. MORITZ

Professor of Mathematics, University of Washington

Cloth, i2tno

A text containing the material essential for a short course in Freshman Mathematics which

is complete in itself, and which contains no more material than the average Freshman can

assimilate. The book, will constitute an adequate preparation for further study, and will

enable the student to take up the usual course in analytical geometry without any handicap.

Among the subjects treated are : Factoring, Radicals, Fractional and Negative Exponents,

Imaginary Quantities, Linear and Quadratic Equations ; Coordinates, Simple and Straight

Line Graphs, Curve Plotting, Maxima and Minima, Areas; The General Angle and Its

Measures, The Trigonometric or Circular Functions, Functions of an Acute Angle; Solution

of Right and Oblique Triangles; Exponents and Logarithms; Application of Logarithms to

Numerical Exercises, to Mensuration of Plane Figures, and to Mensuration of Solids; The
Four Cases of Oblique Triangles, Miscellaneous Problems Involving Triangles.

Plane and Spherical Trigonometry

By LEONARD M. PASSANO

Associate Professor of Mathematics in the Massachusetts Institute of

Technology
Cloth, 8vo, $1.25

The chief aims of this text are brevity, clarity, and simplicity. The author presents the

whole field of Trigonometry in such a way as to make it interesting to students approaching

some maturity, and so as to connect the subject with the mathematics the student has pre-

viously studied and with that which may follow.

CONTENTS
PLANE TRIGONOMETRY chapter

6. The Solution of General Triangles . .

The Solution of Trigonometric Equa-
CHAPTER

1. The Trigonometric Functions of Any tions
Angle and Identical Relations among
Them

2. Identical Relations Among the Func- SPHERICAL TRIGONOMETRY
tions of Related Angles: The Values

of the Functions of Certain Angles 8. Fundamental Relations

3. The Solution of Right Triangles. 9. The Solution of Right Spherical Tri

Logarithms and Computation by angles

Means of Logarithms 10. The Solution of Oblique Spherical

4. Fundamental Identities Triangles

5. The Circular or Radian Measure of an n. The Earth as a Sphere ...
Angle. Inverse Trigonometric Func- Answers
tions

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



Differential and Integral Calculus

By CLYDE E. LOVE, Ph.D.

Assistant Professor of Mathematics in the University of Michigan

Crown 8vo, $2.10

Presents a first course in the calculus — substantially as the author has
taught it at the University of Michigan for a number of years. The follow-

ing points may be mentioned as more or less prominent features of the book :

In the treatment of each topic the author has presented his material in

such a way that he focuses the student's attention upon the fundamental
principle involved, insuring his clear understanding of that, and preventing
him from being confused by the discussion of a multitude of details. His
constant aim has been to prevent the work from degenerating into mere
mechanical routine; thus, wherever possible, except in the purely formal

parts of the course, he has avoided the summarizing of the theory into

rules or formulas which can be applied blindly.

The Calculus

By ELLERY WILLIAMS DAVIS
Professor of Mathematics, the University of Nebraska

Assisted by William Charles Brenke, Associate Professor of Mathe-
matics, the University of Nebraska

Edited by Earle Raymond Hedrick

Cloth, semi-flexible, with Tables, i2tno, $2.10

Edition De Luxe, flexible leather binding, $2.50

This book presents as many and as varied applications of the Calculus

as it is possible to do without venturing into technical fields whose subject

matter is itself unknown and incomprehensible to the student, and without

abandoning an orderly presentation of fundamental principles.

The same general tendency has led to the treatment of topics with a view
toward bringing out their essential usefulness. Rigorous forms of demon-
stration are not insisted upon, especially where the precisely rigorous proofs

would be beyond the present grasp of the student. Rather the stress is laid

upon the student's certain comprehension of that which is done, and his con-

viction that the results obtained are both reasonable and useful. At the

same time, an effort has been made to avoid those grosser errors and actual

misstatements of fact which have often offended the teacher in texts other-

wise attractive and teachable.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New Tork

S~- f ( l+L-)^



^-Cv,

'•



"""".SSSHSy-."™

10w-7.



Iir,i

YB

Y/.o9(.1

889757(^^533

THE UNIVERSITY OF CALIFORNIA LIBRARY

(,.o 1 rc




